

 2

Best Practice Guide on
Power Consumption
Measurements in
EuroHPC Systems

 3

Project Title High-level specialised application support service in High-
Performance Computing (HPC)

Project Acronym EPICURE

Project Number 101139786

Type of Action DIGITAL JU Simple Grants

Topic DIGITAL-EUROHPC-JU-2022-APPSUPPORT-01-01

Starting Date of Project 2024-02-01

Ending Date of Project 2028-01-31

Duration of the Project 48 months

Website epicure-hpc.eu

Document version 2.0

Document publication
date

2026-01-31

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or
EuroHPC Joint Undertaking. Neither the European Union nor the granting authority
can be held responsible for them.

 4

Executive Summary
This document provides practical guidance for users of EPICURE on accessing and
interpreting power consumption data from various EuroHPC supercomputing systems.
It outlines the different approaches each system uses to collect, aggregate, and
expose energy and power measurements, and offers concrete examples and job script
templates to help users monitor and analyse the energy footprint of their applications.

 5

Changes in revision v2.0
The following changes have been added in version v2.0 relative to v1.0:

• Benchmarks
o Figures

Guidance with each figure.
o Results

Guidance with interpreting the data: significance of the results,
explanation for the outliers in the data

• Conclusions
o Measurements

Comments on the results and the limitations of measuring the power
consumption of different HPC sites.

 6

Table of Contents

1. Introduction ... 7

2. Overview of the benchmarks ... 8

2.1. CPU ... 8

2.2. GPU .. 9

3. EuroHPC systems ... 10

3.1. LUMI ... 10

3.2. Leonardo .. 11

3.3. MareNostrum 5 .. 13

3.4. MeluXina ... 14

3.5. Karolina .. 15

3.6. Discoverer .. 17

3.7. Vega .. 18

3.8. Deucalion ... 19

3.9. JUPITER ... 20

4. Tools ... 22

4.1. Slurm .. 22

4.2. EAR ... 22

4.3. MERIC runtime system .. 27

4.4. COUNTDOWN .. 30

4.5. RAPL and NVIDIA NVML.. 33

4.6. Dashboards .. 33

5. Overview .. 40

5.1. Job script examples .. 40

5.2. Performance-energy graph ... 43

5.3. Energy usage ... 53

5.4. Normalized energy usage per ns/day and per 1/h ... 57

5.5. Performance and energy heat maps .. 62

6. Conclusion... 67

 7

1. Introduction
This Best Practice Guide on Power Consumption Measurements in EuroHPC Systems
provides an overview of how users can access and interpret power consumption data
across all currently active EuroHPC supercomputers. It describes the tools and
methods available to monitor and analyse energy usage during computation on these
systems.

To support practical application, the guide also includes example job scripts and
benchmark outputs collected from multiple EuroHPC machines. These resources are
shared on EPICURE’s shortbench GitLab repository (EPICURE’s shortbench GitLab),
enabling users to integrate power monitoring into their workflows more effectively.

https://opencode.it4i.eu/epicure/shortbench

 8

2. Overview of the benchmarks
The benchmarks selected for this study are well-known within the HPC community and
are typically available on all EuroHPC clusters. Each of these applications offers
options to run on both CPUs and GPUs, allowing us to compare their performance
and power consumption across different hardware configurations.

These applications are also widely used across HPC facilities, making the results
particularly relevant for users deciding which machine best suits their workloads, or
those seeking practical examples of job scripts and input configurations.

2.1. CPU

GROMACS

About the code

GROMACS is an open-source, high-performance molecular dynamics (MD) package
widely used in the life science community It is primarily designed for biochemical
molecules like proteins, lipids and nucleic acids, but can be used also for non-
biological system like in materials science.

About the benchmark

lignocellulose-rf is part of the PRACE Unified European Applications Benchmark Suite
(UEABS). It simulates a complex lignocellulosic biomass system using reaction-field
for electrostatics, making it relevant for large-scale simulations and scalability
benchmarking.

CP2K

About the code

CP2K is an open-source quantum chemistry and solid-state physics software
package. It is known for its efficiency and scalability on large parallel systems. CP2K
provides a general framework for different modelling methods such as DFT which is
the one used in our benchmark input.

About the benchmark

H2O-DFT-LS is one of CP2K’s default benchmarks included in its installation package.
It performs large-scale DFT calculations on water molecules and is commonly used to
evaluate the scalability and parallel performance of DFT-based simulations on different
computing architectures.

NAMD

About the code

NAMD is a computer software optimized for high-performance molecular dynamics
simulations. It is noted for its parallel efficiency and is often used to simulate large
systems (millions of atoms).

https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gromacs
https://www.cp2k.org/performance

 9

About the benchmarks

20stmv2fs.namd (memory-optimized) and 20stmv2fs-nonopt.namd (non–memory-
optimized) are official benchmarks included with NAMD source code. Both are
designed to test performance on large biomolecular systems like the Satellite Tobacco
Mosaic Virus (STMV).

2.2. GPU
The same benchmarks were also executed on GPU-accelerated hardware, using the
same input configurations as on the CPU. This approach enables a direct comparison
of performance and scalability between CPU-only and GPU-accelerated runs.

By comparing CPU and GPU results on identical benchmarks, we can better evaluate
how effectively each code takes advantage of GPU acceleration, as well as quantify
improvements in both performance and power efficiency when running on GPU-
enabled EuroHPC infrastructures. On systems like MareNostrum 5, Leonardo, and
LUMI, where both CPU and GPU partitions are part of the same machine and share
uniform power measurement tools, the comparison becomes especially valuable and
reliable.

https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/

 10

3. EuroHPC systems
As part of the EPICURE project, we have access to all currently active EuroHPC
supercomputing systems across participating sites. This unique collaboration enables
us to run benchmarks and collect power consumption data directly on each of these
systems, ensuring that the information and examples provided in this guide reflect real,
up-to-date usage across the entire EuroHPC landscape.

In this section, we present an overview of each EuroHPC system included in our study.
For each machine, we describe its architecture, available accelerators (CPU/GPU),
and the tools or interfaces it provides for monitoring power and energy usage. This
context will help users understand the capabilities and differences between systems,
and how to apply the practical examples shared in this guide to their own jobs.

3.1. LUMI
LUMI is a pre-exascale EuroHPC supercomputer, supplied by HPE and in production
since 2022. It is hosted by CSC in its Kajaani data centre in Finland.

Specifications

Figure 3-1: Overview of a LUMI-G compute node

GPU partition (LUMI-G)

• 2928 GPU nodes, detail in Figure 3-1
o 4 AMD MI250 GPUs (128 GiB GPU memory)
o 1 AMD Trento host-CPU (512 GiB host memory)

CPU partition (LUMI-C)

• 1888 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 256 GiB RAM

• 128 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 512 GiB RAM

 11

• 32 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 1 TiB RAM

Interactive data-analytics partition (LUMI-D)

• 8 big-memory nodes, 2 x 64-core 2.25 GHz AMD Rome, 4 TiB RAM

• 8 visualization nodes, 8 NVIDIA A40 GPUs (48 GiB GPU memory) and 2 x 64-
core 2.25 GHz AMD Milan (2 TiB host memory)

Measurements

Energy is measured on node level and job consumed energy is reported through Slurm
energy accounting.

Data from pm_counters on node level is available to the administrators.

Additional info

Slurm info

23.02.7; acct_gather_energy / pm_counters

Extra tools

Benchmarking environment

Manual executions

Performance analysis

CrayPat, rocprof. Other (Score-P, Scalasca) may be installed using EasyBuild recipes
found in the LUMI Software Library but are not officially supported.

Links

• Main page
https://www.lumi-supercomputer.eu

• Documentation
https://docs.lumi-supercomputer.eu

• Energy Consumption
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/

• Software Installation
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

3.2. Leonardo
Leonardo is a next-generation pre-exascale Tier-0 supercomputer, part of the
EuroHPC Joint Undertaking, in production since August 2023. It is hosted by CINECA
at the Bologna Technopole in Italy and it is developed and supplied by EVIDEN ATOS.

Specifications

Leonardo is structured into two main compute partitions, both connected via
DragonFly+ (NVIDIA Mellanox Infiniband HDR) 200 Gbps and managed using Slurm
workload manager.

https://www.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

 12

Booster Partition

• 3456 heterogenous nodes with 32 cores/node and 4 GPUs/ node

• Based on single socket Intel Ice Lake CPU (Intel Xeon Platinum 8358, 2.60
GHz, TDP 250 W)

• Equipped with NVIDIA Ampere GPUs, 64 GB HBM2e NVLink 3.0 (200 GB/s)

• 2 x dual port HDR100 per node

Data Centric General Purpose (DCGP) Partition

• 1536 nodes with 112 cores/node

• Based on dual socket 56 cores Intel Sapphire Rapids CPU (2 x Intel Xeon
Platinum 8480p, 2.00 GHz, TDP 350 W)

• Single port HDR100 per node

Measurements

• Energy can be measured at the node and job level by installing COUNTDOWN,
for the Booster partition only.

• GPU energy on Booster can be measured by users via nvidia-smi and NVML.

• CPU energy can be retrieved by reading RAPL sampling data on Booster and
DCGP.

• The CINEMON tool, developed by CINECA staff and based on RAPL and
NVML power measurements, can be installed on Leonardo cluster to measure
the overall CPU, RAM, GPU, NODE and JOB energy consumed. Time series
are currently available, environment variables can be used to adapt the
sampling period of RAPL and NVML. More information regarding its
deployment and measurement configurations can be found on the project
README.md.

Additional info

Slurm info

22.05.10

Extra tools

COUNTDOWN, Intel RAPL and NVIDIA NVML, NVIDIA-SMI, CINEMON

Benchmarking environment

JUBE

Performance analysis

SCORE-P, NSYS, NCU

Links

• Main Page
https://leonardo-supercomputer.cineca.eu

• Energy usage
https://leonardo-supercomputer.cineca.eu/hpc-system/#jump-efficiency

• Documentation
https://docs.hpc.cineca.it/index.html

https://github.com/EEESlab/countdown
https://gitlab.hpc.cineca.it/amonteru/cinemon-public.git
https://leonardo-supercomputer.cineca.eu/
https://leonardo-supercomputer.cineca.eu/hpc-system/#jump-efficiency
https://docs.hpc.cineca.it/index.html

 13

3.3. MareNostrum 5
MareNostrum 5 is a pre-exascale EuroHPC supercomputer supplied by Bull SAS that
combines Lenovo ThinkSystem SD650 V3 and Eviden BullSequana XH3000
architectures, providing two partitions with different technical characteristics.

Specifications

MareNostrum 5 GPP (General Purpose Partition)

The MareNostrum 5 GPP, a general-purpose system, houses 6,408 nodes based on
Intel Sapphire Rapids (4th Generation Intel Xeon Scalable Processors), along with an
additional 72 nodes featuring Intel Sapphire Rapids HBM (High Bandwidth Memory).
This configuration results in a total count of 726,880 processor cores and 1.75PB of
main memory. The different configuration of nodes within this partition is present
below:

• 6192 nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 256 GiB

• 216 high memory nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 1024
GiB

• 72 HBM nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 128 GiB

• 10 Data nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 2048 GiB

MareNostrum 5 ACC (Accelerated Partition)

The MareNostrum 5 ACC accelerated system comprises 1,120 nodes based on Intel
Xeon Sapphire Rapids processors and NVIDIA Hopper GPUs, offering a total (CPUs
+ GPUs) of 680,960 compute units. The nodes are configured with the following
components:

• 1120 nodes, 2x Intel Xeon Platinum 8460Y+ 40cores, 2.3 GHz, 512 GB, 4x
NVIDIA Hopper H100 64GB HBM2

Measurements

• Energy usage is reported through Slurm energy accounting and the Energy
Aware Runtime (EAR) tool.

• On the GPP partition, energy consumption is monitored using both EAR and
Slurm energy accounting.

• On the ACC partition, energy consumption is monitored using EAR only.

Additional info

Slurm info

23.02.7

Extra tools

EAR

 14

Benchmarking environment

JUBE

Performance analysis

TALP, Extrae and Paraver

Links

• Main Page
https://www.bsc.es/supportkc/docs/MareNostrum5/intro/

• Job Submission
https://www.bsc.es/supportkc/docs/MareNostrum5/slurm

3.4. MeluXina
The system is in production since November 2021. The supercomputer is based on
Atos Sequana XH2000, with 813 compute nodes, which are interconnected with
InfiniBand (Dragonfly+ topology).

Specifications

CPU partition

• 573 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 512GiB RAM

GPU partition:

• 200 GPU nodes 4x Nvidia A100 40 GiB HBM2, 2x AMD Rome 7452 (32c, 2.3
GHz, 155W), 512 GiB RAM

Large memory partition

• 20 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 4 TiB RAM

FPGA partition

• 20 FPGA nodes, 2x BittWare 520N-MX 16 GiB HBM2 (Intel Stratix 10MX chip),
2x AMD Rome 7452 (32c, 2.3 GHz, 155W), 512 GiB RAM

Measurements

• Energy is measured on node level and job consumed energy is reported
through Slurm energy accounting.

• Data from IPMI sensors on node level is available to admins.

• For FPGA cards, we use the bittware minitor executable which is only available
to admins.

Additional info

Slurm info

23.11.9; acct_gather_energy / ipmi

https://www.bsc.es/supportkc/docs/MareNostrum5/intro/
https://www.bsc.es/supportkc/docs/MareNostrum5/slurm

 15

Extra tools

Benchmarking environment

Reframe

Performance analysis

Score-P, perf, Intel VTune, NVIDIA Nsight Systems

Links

• Main page
https://docs.lxp.lu

• Energy usage
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring

3.5. Karolina
Karolina is HPE Apollo (Apollo 200 and Apollo 6500) system with fully non-blocking
fat-tree InfiniBand interconnect. The system is in operation from Q2 of 2021. The
Karolina cluster consists of several partitions which together gives over 15.7 PFLOP/s
theoretical peak performance.

Specifications

CPU partition

• 720 nodes, 2 x AMD Zen 2 EPYC 7H12 (280W TDP), 256 GiB DDR4

GPU partition

• 72 nodes, 8 x NVIDIA A100 (40 GiB HBM2) (400 W TDP), 2 x AMD Zen 3 EPYC
7763 (280 W TDP), 1024 GiB DDR4

Measurements

In the Karolina system, MERIC energy efficient HPC software suite is deployed.
Using its Job budgeting service every user may read energy consumption of jobs
executed under the project the user participates in. Administrators can access all jobs.
It is also possible to extract energy consumption of a project, a cluster, a user, or
specific period. In login nodes, a command line utility get_energy is available for users.

The MERIC Job budgeting service on Karolina provides job energy consumption at
several levels:

• CPU energy consumption – In band (performance counters).

• GPU energy consumption – In band (performance counters), if GPUs
available.

• Node energy consumption – Combination of CPU and GPU energy
consumption (high frequency power sampling, typically 1kHz) and Out-of-Band
power monitoring of the node (low frequency, typically 0.017 up to 1 Hz).

• Overall energy consumption – Node energy consumption multiplied by
system Power Usage Effectiveness (PUE) at the moment of the job execution.

https://docs.lxp.lu/
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring

 16

• CO2e – Overall energy consumption multiplied by carbon intensity
(gCO2eq/kWh) at the moment of the job execution. The source of the carbon
intensity can be site-specific, or universal solution reading the data from
https://app.electricitymaps.com/, which provides the carbon intensity per region
(in Europe typically per country).

Besides the command line utility which prints the CO2e and energy consumption at all

the levels, the Job budgeting service also provides web interface which in addition

presents power consumption timeline (power consumption of each CPU, each GPU,

each node) during the job. The timeline granularity is 0.017 Hz (one sample per

minute) presenting average power consumption during the past minute.

For users, MERIC runtime system (used as a user-tool instead of runtime system) is

available as a software module to measure energy consumption per application

execution using command line utility, or energy consumption and energy-efficiency

metrics per application region if linked with the library and application's regions of

interest instrumented. See section 4.3 for more details.

Administrators have additional power monitoring dashboards presenting power and

temperature level per node and chassis in a rack, per rack, cluster and other

infrastructure levels according to site-specific availability.

Energy efficiency optimization

From February 2023 the Karolina cluster is operated in the static energy efficient
mode, which reduces CPU core frequency limit of CPU partition from 3.3 GHz to 2.1
GHz, and GPU SMs frequency limit of GPU partition from 1.41 GHz to 1.29 GHz.

Additionally, a group of users (extended on request) may access CPU and GPU power

management knobs to optimize energy efficiency of the executed workload. MERIC

runtime system is available as a software module to expose these knobs and provide

static and automatic dynamic tuning to improve executed application energy efficiency.

See section 4.3 for more details.

Additional info

Slurm info

23.11.10

Extra tools

MERIC

Benchmarking environment

Gitlab runners with Jacamar CI driver available in IT4Innovations' GitLab (available to
all system users) which allows to execute continuous integration and continuous
benchmarking jobs in compute nodes.

Performance analysis

POP CoE tools (Score-P, Scalasca, Extrae, MAQAO, DLB, MERIC, MUST, CARM),
NVIDIA Nsight Systems, Linaro's software tools, Intel Advisor, Intel VTune, AMD μProf

https://app.electricitymaps.com/

 17

Links

• Main page
https://docs.it4i.cz/karolina/introduction/

• Energy usage
https://docs.it4i.cz/general/energy/?h=energy

• Meric Suite
https://code.it4i.cz/energy-efficiency/meric-suite

• POP tools
https://pop-coe.eu/

3.6. Discoverer
The system is in production since September 2021. The supercomputer is based on
Atos Sequana XH2000, with 1128 compute nodes, which are interconnected with
InfiniBand (Dragonfly+ topology).

Specifications

CPU partition

• 1110 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM

Large memory partition:

o 18 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM

Discoverer+ GPU partition

• 32 (4 × 8) NVIDIA H200 GPU accelerators, 448 (112 × 4) hardware CPU cores,
7.84 (1.96 × 4) TiB RAM

Measurements

Energy is measured on node level and job consumed energy is reported through
custom web-based interface.

Data from IPMI sensors on node level is available to administrators.

Additional info

Slurm info

20.02.6-Bull.1.1

Extra tools

Benchmarking environment

Manual executions

Performance analysis

Intel Vtune, NVIDIA Nsight, perf, AMD μProf, Score-P, TAU, HPCToolkit.

https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/

 18

Links

• Main page
https://docs.discoverer.bg/index.html

3.7. Vega
The system is in production since April 2021. The supercomputer is based on Atos
Sequana XH2000, with 1020 compute nodes, which are interconnected with InfiniBand
(Dragonfly+ topology).

Specifications

CPU partition

• 768 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM

• 192 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM

GPU partition

• 60 GPU nodes 4 x Nvidia A100, 2 x AMD Rome 7H12, 512 GiB RAM

Measurements

Energy is measured on node level and job consumed energy is reported through Slurm
energy accounting (IPMI).

Data from IPMI sensors on node level is available to admins. Kernel module for RAPL
is loaded but not readable for users.

Additional info

Slurm info

24.11.4; acct_gather_energy/ipmi

Extra tools

NVML

Benchmarking environment

Manual Execution.

Performance analysis

LIKWID, TotalView, Score-P, perf, Intel VTune, PAPI, nways, ...

Links

• Main page
https://www.izum.si/en/hpc-en/

• Energy usage
https://doc.vega.izum.si/energy-usage/

https://docs.discoverer.bg/index.html
https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/

 19

3.8. Deucalion
Deucalion is a peta-scale EuroHPC supercomputer, supplied by Fujitsu (currently Fsas
Technologies) and in production since June 2024. It is hosted by FCT at Universidade
do Minho in Guimarães, Portugal.

Deucalion has 3 partitions: one partition based on the Fujitsu ARM A64FX processors,
one based on AMD Epyc 7742 processors (2 sockets per node) and an accelerated
partition based on AMD Epyc 7742 accelerated with Nvidia A100 GPUs (4 per node,
including both A100 with 40 and 80 GiB of VRAM).

The ARM partition is interconnected with Infiniband HDR Fat-Tree with 1:1.6 blocking
factor and the AMD and GPUs partitions are interconnected with Infiniband HDR Fat-
Tree with 1:1 non-blocking.

Specifications

CPU (A64FX) partition

• 1632 ARM FX700 nodes, Fujitsu’s A64FX (48c, 2.0 GHz), 32 GiB RAM

CPU (x86) partition

• 500 nodes, 2x AMD Epyc 7742 (64c, 2.25 GHz), 256 GiB RAM

GPU partition

• 17 nodes, 4 x Nvidia A100 GPUs (40 GiB GPU memory), 2 x AMD Epyc 7742
(64c, 2.25 GHz), 512 GiB RAM

• 16 nodes, 4 x Nvidia A100 GPUs (80 GiB GPU memory), 2 x AMD Epyc 7742
(64c, 2.25 GHz), 512 GiB RAM

Measurements

Deucalion uses the MERIC energy-efficient HPC software suite, the same as Karolina
(See section 3.5).

Additional info

Slurm info

23.11.8

Extra tools

MERIC

Benchmarking environment

Manual Execution

Performance analysis

POP CoE tools (Score-P, Scalasca, MAQAO, DLB, MERIC), Intel Vtune

 20

Links

• Main page
https://docs.deucalion.macc.fccn.pt

3.9. JUPITER
JUPITER, the “Joint Undertaking Pioneer for Innovative and Transformative Exascale
Research", will be the first exascale supercomputer in Europe. The system is provided
by a ParTec-Eviden supercomputer consortium and was procured by EuroHPC JU in
cooperation with the Jülich Supercomputing Centre (JSC). It is installed in the
Forschungszentrum Jülich campus in Germany.

Specifications

JUPITER Booster consists of ~6000 standard compute nodes

• 4 × NVIDIA GH200 Grace-Hopper Superchip (see Figure 3-2)
o CPU: NVIDIA Grace (Arm Neoverse-V2), 72 cores at 3.1 GHz base

frequency; 120 GiB LPDDR5X memory at 512 GiB/s (8532 MHz)
o GPU: NVIDIA Hopper H100, 132 multiprocessors, 96 GiB HBM3

memory at 4 TiB/s
o NVIDIA NVLink-C2C CPU-to-GPU link at 900 GiB/s
o TDP: 680 W (for full GH200 superchip)

• NVLink 4 GPU-to-GPU link, 300 GiB/s between pairs of GPUs (150 GiB/s per
direction)

• Network: 4 × InfiniBand NDR200 (Connect-X7)

Measurements

LLview (see section 4.6) can report power metrics (in Watts) at several levels, i.e. node
power, CPU/GPU power, superchip power.

Additional info

Figure 3-2: Node diagram of the 4× NVIDIA GH200 node design of JUPITER Booster.

https://docs.deucalion.macc.fccn.pt/

 21

Slurm info

Extra tools

LLview

Benchmarking environment

JUBE

Performance analysis

Score-P, Scalasca, CUBE, Vampir

Links

• Main page
https://jupiter.fz-juelich.de/

• LLview
https://llview.fz-juelich.de/

https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/

 22

4. Tools

4.1. Slurm
SLURM is an open-source, fault-tolerant, and highly scalable workload manager
designed for both large and small Linux clusters.

For power management, SLURM offers plugins that collect energy consumption data
on a per-job basis. These plugins can use various hardware interfaces, such as IPMI,
RAPL counters, or external scripts, depending on what is available on the system. The
collected data is stored alongside each job and can be retrieved later using the sacct
command, as described below.

More details about SLURM’s power measurement options can be found in the Slurm
documentation on AcctGatherEnergyType.

In the benchmarks presented in this document, when power data was obtained
through SLURM, we used the commands given in Figure 4-1 to report the job type and
the corresponding energy consumption.

4.2. EAR
EAR software is a management framework optimizing the energy and efficiency of a
cluster of interconnected nodes. To improve the energy of the cluster, EAR provides
energy control, accounting, monitoring and optimization of both the applications
running on the cluster and of the overall global cluster.

At EAR’s core is a monitoring tool which gathers data on the nodes and on the
applications running on the cluster. Therefore, on top of optimizing the energy
consumed by the applications running on the cluster and the overall global cluster,
EAR reports system and application information.

EAR components are the EAR library (EARL), EAR DB manager (EARDBD), EAR
Daemon (EARD), EAR Slurm plugin (EARplug) and EAR Global Manager (EARGM).
EAR offers a highly configurable and extensible infrastructure for energy management.
Last version of EAR includes a plugin mechanism to dynamically load power policies,
power and time models, energy readings and application traces generation. To offer a
simple install and test approach, EAR includes default powerful plugins for all these
features. Slurm is the batch scheduler full compatible with EAR thanks to EAR's Slurm
SPANK plug-in. With EAR's Slurm plug-in, running an application with EAR is as easy
as submitting a job with either srun, sbatch or mpirun. The EAR Library (EARL) is
automatically loaded with some applications when EAR is enabled by default.

$ sacct -j jobid.0 \
> -o nnodes,ntasks,ncpus,consumedenergy,consumedenergyraw, elapsed,elapsedraw

 Figure 4-1:The command to report the job type and the energy consumption.

https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType

 23

EAR Features

The following list highlights the main functionalities and features provided by EAR.
While the accompanying examples are demonstrated on the MareNostrum 5
supercomputer, these capabilities are designed to be available in any standard
installation of EAR.

EAR job Accounting

The eacct command shows accounting information stored in the EAR DB for jobs (and
steps) IDs. The command uses EAR's configuration file to determine if the user
running it is privileged or not, as non-privileged users can only access their
information. It provides the following options.

Usage examples

The basic usage of eacct retrieves the last 20 applications (by default) of the user
executing it. If a user is privileged, they may see all users’ applications. The default
behaviour shows data from each job-step, aggregating the values from each node in
said job-step. If using Slurm as a job manager, a sb (sbatch) job-step is created with
the data from the entire execution. A specific job may be specified with -j option.

For node-specific information, the -l (i.e., long) option provides detailed accounting of
each individual node. If EARL was loaded during an application execution, runtime
data (i.e., EAR loops) may be retrieved by using -r flag. An example of both their usage
is shown below.

To easily transfer the output from eacct, you can use the -c option to save the
requested data in CSV format. This can be done as follows:

[user@host EAR]$ eacct -j 21382481-c test.csv

Figure 4-4: Saving the output of eacct to test.csv.

Figure 4-2: Output obtained using the eacct command for a specific job.

Figure 4-3: eacct showing detailed accounting of each node.

https://oos.eduuni.fi/ear_team/ear/-/wikis/EAR-commands

 24

If successful, you’ll see a message like:

Successfully written applications to csv. Only applications with EARL will
have its information properly written.

Figure 4-5: The success message from the EAR application.

Example: Using EAR with Slurm+srun on MareNostrum5

When submitting jobs with sbatch, EAR options can be specified using the ear module,
available in both partitions. For example:

#SBATCH --ear=on # Enable Energy-Aware Runtime (EAR) monitoring
#SBATCH --ear-verbose=1 # Enable verbose EAR output

module load ear # load the ear module
mkdir -p ear_metrics # create directory to store EAR results

srun --ear-user-db=ear_metrics/app_metrics gmx_mpi mdrun \
 -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200

Figure 4-6: Example job script using EAR on MareNostrum 5

EAR policies

EAR offers three energy policies plugins: min_energy, min_time and monitoring. The last

one is not a power policy, is used just for application monitoring where CPU frequency
is not modified (neither memory nor GPU frequency). The energy policy is selected by
setting the --ear-policy=policy option when submitting a Slurm job. A policy
parameter, which is a particular value or threshold depending on the policy, can be set
using the flag --ear-policy-th=value.

min_energy

The goal of this policy is to minimise the energy consumed with a limit to the
performance degradation. This limit is set in the Slurm --ear-policy-th option or the
configuration file.

min_time

The goal of this policy is to improve the execution time while guaranteeing a minimum
ratio between performance benefit and frequency increment that justifies the increased
energy consumption from this frequency increment.

For instance, if --ear-policy-th=0.70, EAR will prevent scaling to upper frequencies if
the ratio between performance gain and frequency gain do not improve at least 70%
(PerfGain ≥ FreqGain ⋅ Threshold).

srun --ear-policy=min_energy \
 --ear-user-db=more_test_min_energy/app_metrics gmx_mpi mdrun \
 -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200

Figure 4-7: Selecting min_energy in a Slurm job.

 25

Figure 4-8: Example job script using EAR on MareNostrum 5

srun --ear-policy=min_time --ear-policy-th=0.70 \
 --ear-user-db=more_test_min_time/app_metrics gmx_mpi mdrun \
 -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200

Figure 4-9: Selecting min_time policy in a Slurm job.

CPU Frequency selection in EAR

Within EAR, you can manually select a CPU frequency in combination with a specific
optimization policy.

• Use the --ear-policy=policy_name flag to select the desired policy.

• Use the --ear-cpufreq=value flag to specify the desired CPU frequency.
 The value must be provided in kHz (e.g., 2000000 for 2.0 GHz).

We evaluated the performance and energy consumption of GROMACS on two nodes
using different EAR policy and threshold values.

• Without EAR, the performance was 55.856 ns/day.

Min-Time Policy:

• With the default threshold value (--ear-policy-th=0.65), performance was
53.363 ns/day.

• Using --ear-policy-th=0.70,
 performance slightly decreased to 53.215 ns/day.

Min-Energy Policy:

• With the default threshold (--ear-policy-th=0.05), performance increased to
56.635 ns/day.

• Using a higher threshold (--ear-policy-th=0.10), performance was 55.084
ns/day.

Monitoring Policy (CPU Frequency Scaling):

• At 2.0 GHz, performance was 55.722 ns/day.

 26

• At 1.9 GHz, performance was 56.216 ns/day.

• At 1.8 GHz, performance dropped to 56.138 ns/day.

The energy consumption of GROMACS configuration is shown below:

Configuration Performance
(ns/day)

Energy(J)

GROMACS (No EAR) 55.856 238297

GROMACS (threshold=0.65) 53.363 232404 (min_time)

GROMACS (threshold=0.70) 53.215 219767 (min_time)

GROMACS (threshold=0.05) 56.635 223957 (min_energy)

GROMACS (threshold=0.10) 55.084 218022 (min_energy)

GROMACS (freq=2 GHz) 56.322 207252 (monitoring)

GROMACS (freq=1.9 GHz) 56.216 238364 (monitoring)

GROMACS (freq=1.8 GHz) 56.138 239232 (monitoring)

Links

• EAR Policies
a complete guide on EAR policies (official documentation)
https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies

• Example job scripts

Slurm job scripts using EAR are included in the “shortbench” repository of

EPICURE’s GitLab (see section 5.1)
Platforms/MareNostrum5/<partition>/<benchmark>/<benchmark>_job.sh

• Results

the results from the examples from above can be found in:
Platforms/MareNostrum5/EAR_metrics/<partition>/<benchmark>/

• EAR user guide

a complete user guide on using EAR (official documentation)

https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide.

https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies
https://opencode.it4i.eu/epicure/shortbench
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide

 27

4.3. MERIC runtime system
MERIC runtime system from the MERIC energy efficient HPC software suite is one of

the flagship codes of Performance Optimisation and Productivity (POP) EuroHPC

Centre of Excellence (CoE). As a CoE flagship code, the MERIC is being deployed as

public software module to all EuroHPC systems to provide energy consumption

measurement, and in some systems also power management (currently Karolina, and

Deucalion). Thanks to the MERIC, the user has unified interface to read energy

consumption despite the underlying hardware is different, using a hardware-specific

power monitoring system, or the energy consumption is exposed by one of many

possible ways.

The user may use a command line utility to measure energy consumption of an

application complete execution or link the application with MERIC library and

instrument application's regions of interest.

mericStatic -e RAPL,NVML -- start &
/path/to/benchmark [app params]

mericStatic -- stop
mericStatic – eval

Figure 4-10: Example single-node usage of the mericStatic command line utility to measure energy

consumption using RAPL and NVML performance counters.

mpirun -np $nnodes --map-by ppr:1:node mericStatic -e RAPL,NVML -- start &
srun --overlap --ntasks-per-node 1 --nodes $nnodes mericStatic \
-e RAPL,NVML -- start &

srun /path/to/benchmark [app params]

mpirun -np $nnodes --map-by ppr:1:node mericStatic – stop
srun --ntasks-per-node 1 --nodes $nnodes mericStatic -- stop

mericStatic -- eval

Figure 4-11: Example multi-node usage of the mericStatic command line utility using srun or mpirun to start

and stop the measurement in all allocated nodes ($nnodes).

 28

Runtime [s] = 279.835
PCKG_ACTIVE_CORES_AVG_0 [J] = 858.128
PCKG_ACTIVE_CORES_AVG_1 [J] = 837.706
PCKG_0 [J] = 58676.202
PCKG_1 [J] = 59319.097

RAPL Energy consumption [J] = 117995.299
RAPL Energy consumption [Wh] = 32.776

Runtime [s] = 279.835
GPU_0 [J] = 21789.773
GPU_1 [J] = 22634.641
GPU_2 [J] = 21576.006
GPU_3 [J] = 21356.166
GPU_4 [J] = 20476.886
GPU_5 [J] = 20994.002
GPU_6 [J] = 20145.965
GPU_7 [J] = 21866.124

NVML Energy consumption [J] = 170839.563
NVML Energy consumption [Wh] = 47.455

Figure 4-12: Example output of the mericStatic -- stop command from a single node of Karolina equipped

with two AMD EPYC CPUs and eight Nvidia GPUs (benchmark executed in two compute nodes).

MERIC requires that user specify what power monitoring to use. Thus, user must know

which ones are available in the system. For that purpose, the user may use the

systemInfo MERIC utility, which prints details about the underlying hardware and its

power monitoring and power management possibilities.

job_id :2685249
job_id :2685249
Max Runtime [s] = 279.881
NVML Energy consumption [J] = 338331.189
RAPL Energy consumption [J] = 235217.793

Total Energy consumption [J] = 573548.982
Total Energy consumption [Wh] = 159.319

Figure 4-13: Example output of the mericStatic -- eval command summarising measurement from all used

compute nodes (the same measurement as in Figure 4-12).

 29

SYSTEM INFORMATION
 CPU name: AMD EPYC 7763 64-Core Processor
 Sockets per Node: 2
 Cores per Socket: 64
 Threads per Core: 1
 GPU name: NVIDIA A100-SXM4-40GB
 GPUs per node: 8

CPU FREQUENCIES
 Turbo CPU core frequencies: 3525000 kHz
 Nominal CPU core frequency: 2450000 kHz

GPU FREQUENCIES
 Memory: 1215000 kHz SM: 1410000 - 210000 kHz (81 steps)
 Default memory frequency: 1215000 kHz
 Default streaming multiprocessor frequency: 1095000 kHz

CPU POWER LIMITS
 CPU max power limit: 280 W
 CPU power limit: 280 W

GPU POWER LIMITS
 GPU max power limit: 400 W
 GPU min power limit: 100 W
 GPU default power limit: 400 W

AVAILABLE POWER MONITORING SYSTEMS
 RAPL
 NVML

Figure 4-14: Output of the systemInfo utility when executed in a Karolina accelerated node.

Slurm job scripts using mericStatic utility can be found in the shortbench repository of

EPICURE’s GitLab (see section 5.1) in

Platforms/Karolina/<partition>/<benchmark>/<benchmark>_job_meric.sh.

See MERIC runtime system user guide for more information on how to use MERIC to

instrument an application, and how use MERIC to optimize an application energy

efficiency.

https://code.it4i.cz/energy-efficiency/meric-suite/meric

https://opencode.it4i.eu/epicure/shortbench
https://code.it4i.cz/energy-efficiency/meric-suite/meric

 30

4.4. COUNTDOWN
COUNTDOWN is a power management tool able to track MPI and application phases
to automatically reduce power consumption of the computing elements during MPI
communication and synchronization. The tool intercepts all MPI calls and execute the
communication via an equivalent PMPI call, but after and before a prologue and an
epilogue routine. These routines are defined in the “profile” and “event” COUNTDOWN
modules, supporting monitoring and power management, respectively. Environment
variables can be set to control the kind of HW performance counter, the configuration
of the monitoring/management or the verbosity of logging. COUNTDOWN can be
preloaded at runtime without source code modifications, or if needed it also provides
a static-linking library to be used at compile time.

COUNTDOWN implements three complementary profiling strategies to monitor
application behaviour at varying levels of granularity:

1. MPI Profiler
This component collects detailed information about the MPI activity of each
process. It records MPI communicators, groups, and the core ID where the
process is running. These metrics help characterize communication behaviour
and detect potential inefficiencies.

2. Fine-Grain Micro-Architectural Profiler
Running in parallel with the MPI profiler, this component gathers micro-
architectural metrics at every MPI call using the RDPMC instruction in user
space to access Intel’s Performance Monitoring Units (PMUs). It records values
such as average core frequency, Time Stamp Counter (TSC), and instructions
retired. Up to 8 configurable counters are available, allowing users to monitor
application-specific low-level performance events. This fine-grain insight is
valuable for identifying computational inefficiencies within MPI regions.

3. Coarse-Grain Profiler
This profiler samples a broader range of hardware performance counters,
including TSC, instructions retired, frequency, temperature, and C-state
residencies at both core and uncore levels. It also monitors energy consumption
and power usage using Intel’s Running Average Power Limit (RAPL) interface.
Because access to these low-level hardware counters typically requires
elevated privileges, COUNTDOWN uses the msr_safe driver. This driver
enables secure access for standard users to a restricted subset of privileged
architecture registers without compromising system security. Due to the
overhead of frequent sampling, this profiler operates on a time-based interval:
data is collected only if a predefined time Ts has passed since the last sample.
The fine-grain profiler checks this interval and, if exceeded, triggers a new
coarse-grain sample to maintain synchronization.

Detailed data from the MPI profiler is stored in binary format to manage file size during
long executions. In parallel, a human-readable text summary is also generated to
provide an accessible overview of profiling results.

CNTD source code can be downloaded from:

https://github.com/EEESlab/countdown.git

https://github.com/EEESlab/countdown.git

 31

The installation, using CMake, must be configured with the same MPI and compiler

used for the application. A basic installation on Leonardo Booster can be achieved, for

example, with the following commands

where -DCNTD_ENABLE_CUDA=ON is needed to profile GPU metrics. For additional
configuration options, the user can rely on installation instructions in
https://github.com/EEESlab/countdown/blob/develop/README.md.

For the sampling approach of CNTD, the user needs to preload the library libcntd.so;

the measurement can be customized with parameters setting, for example, the

sampling interval and the name of the output directory.

module purge
module load openmpi/4.1.6--gcc--12.2.0
module load cuda/12.1
cmake -DCNTD_ENABLE_CUDA=ON ../
make

Figure 4-15: Basic installation of CNTD.

https://github.com/EEESlab/countdown/blob/develop/README.md

 32

The default measurement configuration will provide tables with the following metrics:

• execution time,

• parallel information (number of MPI tasks, GPUs, nodes),

• energy of the job (PKG, DRAM, GPU),

• average power (PKG, DRAM, GPU),

• performance information (Time in MPI communications, maximal memory
usage, CPU frequency, ...),

• GPU reporting (utilization, memory, temperature),

• more detailed information about MPI.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --time=00:20:00
#SBATCH --exclusive
#SBATCH --gres=gpu:4
#SBATCH --partition=boost_usr_prod

module purge
module load profile/lifesc
module load gromacs/2022.3--openmpi--4.1.6--gcc--12.2.0-cuda-12.1

export OMP_NUM_THREADS=8
export OMP_PLACES=cores
export OMP_PROC_BIND=close

export GMX_ENABLE_DIRECT_GPU_COMM=1

export CNTD_SAMPLING_TIME=0.1
export CNTD_OUTPUT_DIR=CNTD
export LD_PRELOAD=<path-to-installation>/src/libcntd.so

srun -n 4 --cpu-bind=cores --cpus-per-task=$SLURM_CPUS_PER_TASK \
 gmx_mpi mdrun -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 \
 -nstlist 200 -dlb yes

Figure 4-16: Example job script using CNTD.

 33

4.5. RAPL and NVIDIA NVML
Intel and AMD performance counters are exposed using tools and plugins like perf,
intel_rapl, amd_energy, msr_safe, EAR, MERIC, GEOPM, COUNTDOWN, and many
more. Each EuroHPC site uses a different interface to expose these counters. MERIC
provides unified way to read RAPL from them all. It has been deployed already on
several EuroHPC systems.

Similarly, information provided by NVML is used by MERIC and COUNTDOWN.

4.6. Dashboards

BSC HPC | User Portal

The “HPC User Portal” (https://hpcportal.bsc.es/) is a job and resource monitoring
platform designed with the needs of HPC users in mind. It allows users to check the
status and general resource usage metrics of their submitted jobs. In addition, the
portal provides machine statistics, such as the number of available and allocated
CPUs, for BSC's primary HPC systems. The platform is still under active development
and will progressively offer more features over time. Currently, for the Accelerated
(ACC) partition, power consumption data is not yet available, but it is being worked on.
Some of the features provided by HPC portal are listed below:

Job monitoring

The main page of the HPC User Portal is the job monitoring screen. It will list all your
jobs launched in all the machines by every account you have. This list contains a brief
listing of the general characteristics of each job (like its name, user, status, node/task
configuration...). If the job listed is in the “running” status, it will also show you the
current CPU and memory usage.

Once a specific job is selected, we get the job details:

Figure 4-17: Main page of the HPC User Portal.

https://hpcportal.bsc.es/

 34

CPU usage, memory usage and power consumption are also provided.

Figure 4-20: CPU usage.

Figure 4-21: Memory usage.

Figure 4-18: Job details.

Figure 4-19: Power consumption.

 35

LLview

LLview is a set of software components for monitoring clusters controlled by a
resource manager and scheduler system. It collects existing data from the system and
presents it to the user via a web portal. (https://llview.fz-juelich.de/)

At JSC, LLview collects data from the Slurm workload manager, various daemons
running on compute nodes, and sensors that either log information to files or interface
with the Prometheus monitoring system. LLview then aggregates and reorganises the
monitoring data, stores the information required for reporting in separate SQLite
databases and presents it to the user via a web-based front-end portal.

The LLview Job Reporting web portal provides:

• job list tables, containing their aggregated performance information (for jobs
that are running or have already finished within three weeks),

• timeline graphs per job for the key performance metrics,

• access to detailed job reports, including an interactive report or a static PDF
version,

• role-based access to different levels of information,

• live view of the system.

In Figure 4-22, a snapshot of the Jobs Dashboard shows a table with one job per row
and each column containing one of its metrics. Some columns are colour coded to
indicate potential problems. Detailed job reports can be accessed in the rightmost
columns. Selecting a row displays aggregated graphs at the bottom of the page.

The dashboard provides a wide range of metrics, grouped into the following
categories:

• Job metadata
Job ID, username, project id, start time, estimated end time,

• CPU
average CPU usage, number of active physical/logical cores, memory usage,

Figure 4-22: LLview Job reporting web portal.

https://llview.fz-juelich.de/

 36

• GPU
GPU utilization, memory usage, temperature and performance states,
indicators for potential throttling or reduced performance,

• I/O and network activity
read/write throughput, file open/close operation rates, data and packet
input/output rates.

This comprehensive set of metrics enables users to monitor system performance,
detect inefficiencies, and troubleshoot job behaviour effectively.

A significant recent enhancement to the LLview is the support for multiple levels of
power telemetry data. This addition allows granular and comprehensive tracking of
power consumption during job execution. Currently supported power metrics include:

• Node Power
the total power draw for the entire node at the moment of sampling,

• CPU Power
the instantaneous power consumed by the CPU package, including its memory
controllers and system I/O,

• GPU Power
the current power draw of each GPU device, including its onboard memory

• Superchip Power
the power usage for each “superchip” (i.e. combined Grace and Hopper
modules).

Energy consumption is calculated by aggregating power consumption data collected
at one-minute intervals throughout the duration of a job. The resulting energy values
are presented in a variety of units, including watt-hours (Wh), megajoules (MJ) and
kilowatt-hours (kWh), providing flexibility for different analysis needs.

Figure 4-23 illustrates the display of power and energy values on the LLview web
portal. The metrics highlighted within the red frame represent power and energy
values, with each row corresponding to an individual job. For the currently selected
job (indicated by the yellow highlighted row), detailed energy metric timelines are
displayed at the bottom. These timelines provide a temporal view of power
consumption, simplifying analysis of energy usage patterns throughout the job's
execution.

 37

IT4Innovations User Portal and SCS Information System

For information about the current clusters’ usage, IT4I users can go to User Portal
https://extranet.it4i.cz/rsweb. They can switch between the clusters by clicking on their
names in the upper right corner. Users can filter their search by clicking on the
respective keywords.

In addition to general information about the jobs, like runtime, queue, etc., the portal
now also contains information about CPU, GPU, and entire node energy consumption
for any job. Users can also check the power consumption timeline of selected
components of the compute nodes. Examples of these reports are shown in the figures
below.

Figure 4-23: Power and energy values displayed on LLview web portal.

https://extranet.it4i.cz/rsweb

 38

The IT4Innovations Information System (SCS IS) (https://scs.it4i.cz) is a
comprehensive platform for managing the lifecycle of HPC projects. It allows users
and primary investigators to manage project applications, memberships, and
resources from the initial request through to completion.

During the project's active phase, the system provides detailed monitoring capabilities.
This includes tracking the usage of allocated computing resources, which are
measured in node hours, against the approved allocation. As shown in the provided

Figure 4-24: Example of job information provided to users, including energy consumption of CPUs and GPUs.

Figure 4-25: Users can also visualize the power consumption of their job in time. This example shows the power
consumption of individual GPUs on a selected compute node.

https://scs.it4i.cz/

 39

image, the system also offers a specific “Energy Consumption” report. This report
details the energy used in MegaJoules (MJ) and Kilowatt-hours (kWh), and the
associated carbon footprint in CO₂ (kg), with data broken down by CPU, GPU, and
node usage.

Figure 4-26: Example of energy consumption of CPUs, GPUs and nodes per project.

 40

5. Overview

Since not all machines use the same metrics (see the “Measurements” section for the
different machines), the plots shown are just an indication. Moreover, energy usage
by e.g. network components or storage is not measured. If in the future one runtime
system would be available on all machines, it would be easier to compare these
values. We also learned that the sampling frequency for the metrics might influence
the results significantly.

All runs always use full nodes. The most optimal configuration on one node
(combination of MPI ranks, threads and GPUs if applicable) is taken as a baseline.
This configuration is used in subsequent runs on two, four, eight, … nodes. Consider
that the graphs show always the number of nodes, irrespective of the number of CPU
cores or GPUs that might be different in the machines.

It becomes clear from the graphs, if not known already, that it does not make sense to
keep increasing the number of nodes hoping that computations will finish more rapidly
at a much lower energy cost. And it is important to determine the most optimal
combination of MPI ranks, threads and GPUs before submitting a whole bunch of
computations.

For GROMACS, CP2K and NAMD, we show following plots:

• “Performance-Energy” plot per machine,

• “Energy usage” for all machines.

In addition, we also show for GROMACS and NAMD

• “Normalized energy usage per ns/day”.

All the data shown in the graphs and tables in the following sections are available in
the different Platform folders of the shortbench repository of EPICURE’s GitLab. The
Excel file combining all data can be found there as well.

5.1. Job script examples
The table below contains references to job script examples used for application
executions with power energy measurements. For some machines only the regular
Slurm scripts are available. For others, the example scripts (also) contain references
to external systems (MareNostrum5, EAR; Leonardo, CINEMON and COUNTDOWN;
Karolina, MERIC).

https://opencode.it4i.eu/epicure/shortbench

 41

Machine

Application Partition

(library)

Job script example

MareNostrum5 GROMACS CPU-X86 (EAR) MN5-GROMACS-CPU-X86 example

GPU (EAR) MN5-GROMACS-GPU example

CP2K CPU-X86 (EAR) MN5-CP2K-CPU-X86 example

GPU (EAR) MN5-CP2K-GPU example

NAMD CPU-X86 (EAR) MN5-NAMD-CPU-X86 example

GPU (EAR) MN5-NAMD-GPU example

DECAULION GROMACS CPU-X86 DECAULION-GROMACS-CPU-X86 example

CPU-ARM DECAULION-GROMACS-CPU-ARM example

GPU DECAULION-GROMACS-GPU example

CP2K CPU-X86 DECAULION-CP2K-CPU-X86 example

CPU-ARM DECAULION-CP2K-CPU-ARM example

GPU DECAULION-CP2K-GPU example

NAMD CPU-X86 DECAULION-NAMD-CPU-X86 example

CPU-ARM N/A

GPU DECAULION-NAMD-GPU example

MELUXINA GROMACS CPU-X86 MELUXINA-GROMACS-CPU-X86 example

GPU MELUXINA-GROMACS-GPU example

CP2K GPU-X86 MELUXINA-CP2K-CPU-X86 example

GPU MELUXINA-CP2K-GPU example

NAMD CPU-X86 MELUXINA-NAMD-CPU-X86 example

GPU MELUXINA-NAMD-GPU example

VEGA GROMACS CPU VEGA-GROMACS-CPU-X86 example

GPU VEGA-GROMACS-GPU example

CP2K CPU VEGA-CP2K-CPU-X86 example

GPU VEGA-CP2K-GPU example

NAMD CPU VEGA-NAMD-CPU-X86 example

GPU VEGA-NAMD-GPU example

DISCOVERER GROMACS CPU DISCOVER-GROMACS-CPU-X86 example

CP2K CPU DISCOVER-CP2K-CPU-X86 example

NAMD CPU DISCOVER-NAMD-CPU-X86 example

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/GROMACS/gromacs_job.sh?ref_type=heads
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/CP2K/cp2k.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/NAMD/namd_job_adjusted.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Discoverer/GPP/CP2K/cp2k_job.batch
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch

 42

Machine

Application Partition

(library)

Job script example

CINECA GROMACS CPU (CINEMON) CINECA-GROMACS-CPU-X86 example

GPU (CINEMON) CINECA-GROMACS-GPU example

GPU
(COUNTDOWN)

CINECA-GROMACS-GPU example

CP2K CPU (CINEMON) CINECA-CP2K-CPU-X86 example

GPU (CINEMON) CINECA-CP2K-GPU example

GPU
(COUNTDOWN)

CINECA-CP2K-GPU example

NAMD CPU
(COUNTDOWN)

CINECA-NAMD-CPU-X86 example

GPU (CINEMON) CINECA-NAMD-GPU example

KAROLINA GROMACS CPU KAROLINA-GROMACS-CPU-X86 example

CPU (MERIC) KAROLINA-GROMACS-CPU-X86 example

GPU KAROLINA-GROMACS-GPU example

GPU (MERIC) KAROLINA-GROMACS-GPU example

CP2K CPU KAROLINA-CP2K-CPU-X86 example

CPU (MERIC) KAROLINA-CP2K-CPU-X86 example

GPU KAROLINA-CP2K-GPU example

GPU (MERIC) KAROLINA-CP2K-GPU example

NAMD CPU KAROLINA-NAMD-CPU-X86 example

CPU (MERIC) KAROLINA-NAMD-CPU-X86 example

GPU KAROLINA-NAMD-GPU example

GPU (MERIC) KAROLINA-NAMD-GPU example

LUMI GROMACS CPU LUMI-GROMACS-CPU-X86 example

GPU LUMI-GROMACS-GPU example

CP2K CPU LUMI-CP2K-CPU-X86 example

GPU LUMI-CP2K-GPU example

NAMD CPU LUMI-NAMD-CPU-X86 example

GPU LUMI-NAMD-GPU example

JEDI GROMACS GPU JEDI-GROMACS-GPU example

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np112/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/countdown/logfiles/000001/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/CP2K/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/countdown/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/NAMD/cinemon/logfiles/000000/000000_submit_N1np14/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/NAMD/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/JEDI/ACC/GROMACS/gromacs_job.sh

 43

5.2. Performance-energy graph
The performance for GROMACS and NAMD is reported by the programs in units of
[ns/day]. This reported performance gives an indication of the number of nanoseconds
in simulation time can be executed with an equivalent runtime of 1 day of HPC
resources.

For CP2K, the performance is not reported directly by the program. Instead, the
efficiency (𝜂𝑖) is used, calculated with the following formula:

𝜂𝑖 =
𝑛0 ⋅ 𝑡0
𝑛𝑖 ⋅ 𝑡𝑖

,

with 𝑛0, 𝑛𝑖 the amount nodes in the baseline and 𝑖-th calculation, and 𝑡0, 𝑡𝑖the wall
time for the calculation to complete.

Depending on the benchmark, the normalized performance (GROMACS, NAMD) or
efficiency (CP2K) and the consumed energy are shown simultaneously in the
performance-energy graph. Both quantities are plotted such that they start in the same
point, at the baseline of one full node (𝑛0 = 1). From this baseline quantity, a dotted
line is drawn. The graph has two y-axes, on the left and the right of the graph, where
the normalized performance or efficiency, and total energy consumption are given
respectively.

The normalized performance is obtained by dividing the performance by the number
of nodes used for that calculation. The resulting quantity, the normalized performance,
is an indication for the computation time if the equivalent calculation is performed on
the baseline system of 1 node. For GROMACS and NAMD, the performance is given
in units of [ns/day], which indicates how many nanoseconds of simulation time can be
computed in one day of HPC calculation. This value is expressed in units of
[ns/day/node] and [µs/day/node] for GROMACS and NAMD respectively. Example: if
the performance is 12.90 ns/day on two nodes, it is shown as 12.90 / 2 = 6.45
ns/day/node.

The energy on the graph is the total energy consumption reported for the number of
nodes, expressed in [kJ]. This quantity does not need to be rescaled as the same
calculation is performed on the different systems number of nodes. In general, more
nodes require less computation time but more simultaneous power consumption, such
that the overall energy consumption is in general larger for multiple nodes.

Furthermore, the ‘Net Efficiency Loss’ is given in grey on the figures, which
corresponds to a product of the net performance by the consumed energy. The
resulting quantity gives an indication to the increased power, taking into account the
changes in performance when the code is run on a different number of nodes. A line
that goes up from the baseline indicates a higher than expected power consumption,
when the line drops below the baseline, the calculation will use less power taking into
account the performance loss of running on multiple nodes.

In general, it is expected that the efficiency or performance of the calculation will go
down on multiple nodes, and the energy consumption and net efficiency loss will
increase. The values will deviate from the baseline. In the ideal cases, the three lines
would stay as close to the dotted line as possible.

 44

CPU

GROMACS

In Figure 5-1 and Figure 5-2, the result for the GROMACS tests on CPU are shown.

The results for LUMI, Karolina, Deucalion and Discoverer are similar, with relatively
good scaling around ~75% on 16 nodes and a relative low power increase to ~1.3
times the baseline. The net efficiency loss always lies relatively close to the baseline,
which means that the energy increase originates from the lower performance on
multiple nodes.

For Vega, the baseline power consumption is higher, with an efficiency that stays close
to the baseline. Comparing with the machines mentioned above, it gives the suspicion
that the baseline values have a lower performance, whereas the code runs slightly
better on multiple nodes.

On Leonardo, MareNostrum 5 and MeluXina, the power increase is more significant.
On Leonardo, this is accompanied with a lower performance, where the increase in
power thus probably originates from the less efficient scaling of the code across the
nodes. This is visible in the net efficiency loss that stays close to the baseline

MareNostrum 5 shows a better performance, where the increase in power originates
from the higher number of nodes and not the efficiency. This is visible in the net
efficiency loss that goes up from the baseline.

Figure 5-1: Graphs for GROMACS CPU for LUMI, MeluXina Vega and Karolina.

 45

Figure 5-2: Graphs for GROMACS CPU for MareNostrum 5, Leonardo, Deucalion and Discoverer.

CP2K

The power consumption in [kJ] and efficiency in [%] for CP2K on CPU for the various
machines is given in Figure 5-3 and Figure 5-4.

For Leonardo, there is a large increase in power consumption for 16 nodes, but this
likely originates from the relative bad scaling of CP2K across several nodes; the net
efficiency loss stays almost constant across the calculation.

The other machines give a gradual increase in energy consumption towards ~2 times
the baseline power, with the efficiency dropping towards ~30%.

Figure 5-3: Graphs for CP2K CPU for LUMI and MeluXina.

 46

Figure 5-4: Graphs for CP2K CPU for Vega, Karolina, MareNostrum 5, Leonardo, Deucalion and Discoverer.

NAMD

In Figure 5-5, the results for NAMD on CPU are shown. On LUMI, Leonardo,
MareNostrum 5 and Deucalion relatively good scaling is achieved with a net efficiency
loss that stays close to the baseline. On MeluXina, the efficiency drops significantly
but the power increase is relatively small, leading to a net efficiency loss that goes
down from the baseline.

NAMD has internal parallelisation routines. One of these sets the FFT-grid, which is
thus dependent on the number of tasks. This can explain the jumps in efficiency, while
the net efficiency loss stays close to the baseline. For example, for Discoverer, the
parallelization for 8 nodes is not a direct multiple of the number of tiles, which appears
to be more efficient compared to a perfect tiling on the other configurations. A similar
behaviour appears on MareNostrum 5 with 16 nodes.

 47

Figure 5-5: Graphs for NAMD CPU.

 48

GPU

GROMACS

The results for the performance in [ns/day/node] and the power consumption in [kJ] is
shown in Figure 5-7.

The results for LUMI, MeluXina and Karolina are similar, with an efficiency that drops
to ~30% and a power increase of ~3 times the baseline.

For Vega, MareNostrum 5 and JEDI, the power increase is more substantial as well
as the efficiency that drops significantly. For Vega, there is a large increase of power
consumption around 8 nodes. As the net efficiency loss is under the baseline. This
indicates that there is a problem with the scaling beyond 8 nodes.

Leonardo reports the best scaling for GROMACS on GPU, but the reported baseline
performance is lower than on the other machines.

Figure 5-6: Graphs for GROMACS GPU for LUMI, MeluXina, Vega and Karolina.

 49

Figure 5-7: Graphs for GROMACS GPU for MareNostrum 5, Leonardo, Deucalion and JEDI.

CP2K

In Figure 5-8 the results for the scaling of CP2K on GPU are shown.

MeluXina, Vega, Karolina, MareNostrum 5 and Deucalion report similar scaling on
multiple nodes, with a large power increase towards ~5.5 times the baseline and a low
efficiency of ~15%. For Vega, the net efficiency loss drops significantly below the
baseline, which indicates performance scaling problems. The other listed machines
have a relative stable net efficiency loss, indicating that the increased power
consumption originates from a less ideal scaling.

For LUMI and Leonardo, the scaling and power consumption is slightly better than the
other machines.

Most machines indicate a larger jump around 8 nodes in both a lower performance
and a higher power consumption. This is likely because the program has difficulties
scaling to such many GPUs.

 50

Figure 5-8: Graphs for CP2K GPU.

 51

NAMD

The results for the scaling of NAMD on GPU are shown in Figure 5-9 and Figure 5-10.

For LUMI, MeluXina and Leonardo, the baseline value was taken for two nodes. On
Leonardo, the single node configuration could not perform the benchmark. The single
node run is less efficient for the two other systems, probably due to the internal
automatic parallelisation on NAMD that chooses a less optimal configuration for these
systems.

On Vega, there is a clear scaling issue on the GPUs, with efficiency taking a sharp
drop on multiple nodes. The net efficiency loss is below the baseline, indicating that
the increase in computational resources comes from the reduced efficiency.

Figure 5-9: Graphs for NAMD GPU for LUMI, MeluXina, Vega, Karolina, MareNostrum 5 and Leonardo.

 52

Figure 5-10: Graph for NAMD GPU for Deucalion.

ARM

Figure 5-11: Graph for GROMACS ARM (left) and CP2K ARM (right) for Deucalion.

GROMACS

The scaling of GROMACS on ARM for Deucalion has a similar scaling as on GPU,
seen in Figure 5-11 (left), but the performance of the baseline is considerably lower for
a similar amount of consumed energy for the benchmark.

CP2K

The CP2K on ARM for Deucalion in Figure 5-11 (right) shows a bad scaling of CP2K
on ARM. The net efficiency loss is below the baseline, which indicates that the increase
in power originates from the less efficient run on multiple nodes.

100 100
95 92

85

1.00x 1.02x
1.10x

1.19x

1.40x

0

100

200

300

400

500

600

700

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16

En
er

g
y

C
o

n
su

m
p

ti
o

n
 k

J

P
er

fo
rm

an
ce

 n
s

d
ay

 n
o

d
e

 nodes

GROMACS ARM - Deucalion

Normalized Performance Net Efficiency Loss Energy

100

59

33

1.00x

1.17x

1.30x

0

50

100

150

200

250

300

350

400

0

20

40

60

80

100

120

140

4 8 16

En
er

g
y

C
o

n
su

m
p

ti
o

n
 k

J

Effi
ci

en
cy

 nodes

CP2K ARM - Deucalion

Performance Net Efficiency Loss Energy

 53

5.3. Energy usage
This plot shows the energy usage as reported by the different systems, expressed in
[kJ]. As the full benchmark is always performed on each run, the values are directly
comparable between the system. Variations in the power consumption originate from
the different architectures and the methods used to measure the power consumption.

This figure does not give an indication of the total runtime or efficiency. This will be
covered in the next section.

CPU

GROMACS

Figure 5-12: Energy usage graph for GROMACS CPU.

In Figure 5-12, the energy consumption for the different systems for GROMACS on
CPU is compared.

In general, the different systems follow a similar trend. Vega and Karolina seem to
have an overall low energy consumption, whereas Leonardo and MareNostrum 5 have
a larger energy increase with the number of nodes.

CP2K

The results for the energy consumption for CP2K on CPU are shown in Figure 5-13.

Again, the systems have similar characteristics, except for Vega which seems to use
a lot more energy on the benchmark. MareNostrum 5 now performs much better than
the GROMACS-CPU case.

 54

Figure 5-13: Energy usage graph for CP2K CPU.

NAMD

Figure 5-14: Energy usage graph for NAMD CPU.

The results for energy consumption for NAMD-CPU are shown in Figure 5-14. The
systems are deviating more than in the other two CPU benchmarks, but the energy
increase is less significant. Now, MareNostrum 5 has the highest energy consumption.
The most efficient systems seem to be Karolina, MeluXina and LUMI.

 55

GPU

GROMACS

The results for the power consumption of GROMACS on GPU are shown in Figure
5-15. Compared with the CPU results in previous section, the power consumption
seems to be much higher with the increasing number of nodes. Leonardo seems to be
the exception, with a relatively low power consumption and increase with the number
of nodes. Deucalion, Vega, MareNostrum 5 and JEDI all have a relative high power
consumption depending on the number of nodes they used.

Figure 5-15: Energy usage graph for GROMACS GPU.

CP2K

The results for the power consumption for CP2K on GPU are shown in Figure 5-16.
The trends for the power consumption are similar as the GROMACS GPU results, with
a wider spread in results.

Again, Leonardo and MeluXina seem to perform efficiently, and Deucalion, Karolina
and MareNostrum 5 are consuming the most energy.

For most systems, there seems to be a more pronounced increase in the power
consumption at 8 nodes. This is likely due to the less efficient calculation as explained
with the net efficiency loss from previous section.

 56

Figure 5-16: Energy usage graph for CP2K GPU.

NAMD

The results for the power consumption of NAMD on GPU are shown in Figure 5-17.

Vega has a large increase in power consumption with the number of nodes. Now, LUMI
is the most efficient system, with Leonardo as one of the less efficient systems,
followed by Karolina and MareNostrum 5.

Figure 5-17: Energy usage graph for NAMD GPU.

 57

5.4. Normalized energy usage per ns day and
per 1 h

This plot shows the energy cost to perform a similar computation on a one node
equivalent for one computational cycle. It uses both the concept of normalized
performance of the performance-energy plot, and the total energy usage. The total
energy usage is divided by the normalized performance to obtain the quantity given
on this plot, expressed in [kJ/(ns/day/node)], [kJ/(µs/day/node)] or [kJ/(1/h/node)]. It
shows an increase of the energy cost by increasing number of nodes, and a general
“measure” of the efficiency of the machine. As this value is rescaled with the
performance, it also includes the relative speedup between the different machine, but
also the relative additional energy consumption for this speedup. This value should be
low, as this means a relative low energy usage and a relatively high (normalized)
performance. The main difference between this graph and the total energy difference,
is that this graph also includes the runtime or performance of the calculation, where
the energy usage just reports the total energy consumed over the whole calculation.
For CP2K, the energy usage is divided by the inverse of the runtime in hours.

CPU

GROMACS

Figure 5-18: Normalized energy usage graph for GROMACS CPU.

The results for the normalized energy usage for GROMACS on CPU are shown in
Figure 5-18.

The systems have similar characteristics, with only Leonardo and MeluXina having
two outliers from 8 nodes onwards. From the net efficiency loss in Figure 5-1 and

 58

Figure 5-2, which remains close to the baseline, it seems that there are performance
issues leading to a higher energy consumption.

Below 8 nodes the normalized energy usage is almost flat for most systems. This
means that a higher performance (lower runtime) corresponds to a similar amount of
energy increase.

CP2K

The normalized energy usage for CP2K on CPU is shown in Figure 5-19.

For CP2K, we use the runtime in hours as a reference for the performance.

Leonardo again has a large increase from 16 nodes on.

Compared to GROMACS on CPU, the results seem to increase more with the number
of nodes used on the system. This means that a faster runtime corresponds to a much
higher energy usage than expected. It is much less efficient to run on multiple nodes
with a lower runtime than to run slower on a lower number of nodes.

Except for Leonardo and MareNostrum 5, all the machines seem to give similar
characteristics. MareNostrum 5 is the most efficient machine according to these
results.

Figure 5-19: Normalized energy usage graph for CP2K CPU.

NAMD

The results for NAMD on CPU for the normalized energy usage are shown in Figure
5-20. There is a larger spread in the results compared to the other two benchmarks
on CPU. However, the results are flatter than the other benchmarks, which means that
the program will be faster with a similar ratio in the increase in power consumption.

 59

Figure 5-20: Normalized energy usage graph for NAMD CPU.

GPU

GROMACS

Figure 5-21: Normalized energy usage graph for GROMACS GPU.

For GROMACS on GPU, the results for the normalized energy usage are shown in
Figure 5-21. Compared to the GROMACS CPU results, the values are much higher

 60

for 16 nodes. This means that the faster runtime on 16 nodes uses much more energy
than the efficiency gain provides.

The results for Vega and JEDI are not efficient from 8 nodes onwards. Any reduction
in runtime by a larger number of nodes results in a much larger increase in the energy
consumption on these systems.

Leonardo has a relatively flat curve, where the increase in efficiency has an equal
relative increase in power consumption.

CP2K

The results for the normalized energy usage for CP2K on GPU are shown in Figure
5-22.

Again, Vega has a pronounced energy increase from 8 nodes onwards, followed by
MareNostrum on 5 nodes.

Leonardo is the most efficient, with a relatively low line and energy usage.

Figure 5-22: Normalized energy usage graph for CP2K GPU.

NAMD

The results for NAMD on GPU are shown in Figure 5-23.

The power consumption for Vega goes up drastically from 2 nodes. It is not efficient to
have the relative reduction in runtime for the increase in power consumption for these
configurations.

Interestingly, Leonardo now is one of the less efficient systems, requiring more energy
to get an increase in performance, but this normalized energy usage still is relatively
flat.

LUMI is the most efficient system, with also a relative flat normalized energy usage.

 61

Figure 5-23: Normalized energy usage graph for NAMD GPU.

 62

5.5. Performance and energy heat maps
The heat maps below show the performance and the energy, as was shown in graphs
in Section 5.3. Better results have a greener colour, worse results are more red. The
best and worst results are in a bold font.

Performance

For GROMACS and NAMD, the reported performance in [ns/day] is used, for CP2K
the wall time in [s] is used.

CPU

GROMACS

The performance for GROMACS on CPU is reported in Figure 5-24, higher values
(green) indicate a better performance. The best performance for GROMACS CPU was
obtained on MareNostrum 5 with a total of 91.08 ns/day using 16 nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

1 6.52 5.83 5.92 4.57 8.08 8.11 5.40 6.40

2 12.90 10.86 12.27 9.00 15.16 15.12 10.67 12.94

4 24.70 18.20 23.29 16.87 28.94 24.58 19.94 25.74

8 46.77 31.53 44.01 31.07 53.53 40.86 36.60 47.26

16 82.35 44.03 72.47 53.32 91.08 52.33 61.95 80.56
Figure 5-24: Performance reported by GROMACS/CPU in [ns/day].

CP2K

The wall time for CP2K benchmark on CPU is reported in Figure 5-25, lower values
(green) indicate a better performance. MareNostrum 5 completed the CP2K CPU
benchmark in 34 seconds using 16 nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

1 446 437 535 518 307 401 408 425

2 244 264 303 304 172 258 241 258

4 145 157 188 180 97 174 150 152

8 89 102 120 137 59 118 100 101

16 68 83 87 76 34 120 83 70
Figure 5-25: Total wall time for CP2K/CPU in [s].

NAMD

The performance for NAMD on CPU is reported in Figure 5-26, higher values (green)
indicate a better performance. The best performance for NAMD CPU was obtained on
LUMI with a total of 2.45 ns/day using 16 nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

1 0.12 0.13 0.11 0.08 0.10 0.10 0.08 0.13

2 0.23 0.26 0.22 0.16 0.20 0.21 0.16 0.27

4 0.46 0.45 0.37 0.30 0.32 0.40 0.32 0.49

8 0.89 0.81 0.78 0.54 0.59 0.79 0.63 1.17

16 2.45 1.21 2.06 0.88 1.37 1.87 1.70 1.84
Figure 5-26: Performance reported by NAMD/CPU in [ns/day].

 63

GPU

GROMACS

The performance for GROMACS on GPU is reported in Figure 5-27, higher values
(green) indicate a better performance. The best performance for GROMACS GPU was
obtained on Karolina with a total of 177.66 ns/day using 16 nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI

1 33.56 26.83 19.07 31.30 39.81 17.60 25.35 45.02

2 46.35 50.08 29.86 50.02 54.55 35.73 31.18 46.23

4 91.34 81.56 41.92 86.97 78.49 51.50 48.90 60.15

8 111.71 101.24 15.46 138.51 118.35 100.28 89.23

16 127.88 102.97 27.33 177.66 164.69 111.47 66.42
Figure 5-27: Performance reported by GROMACS/GPU in [ns/day].

 CP2K

The wall time for CP2K on GPU is reported in Figure 5-28, lower values (green)
indicate a better performance. MareNostrum 5 completed the CP2K GPU benchmark
in 38 seconds using 16 nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 283 205 110 206 153 359 259

2 208 151 241 120 107 260 191

4 111 95 146 91 68 114 133

8 87 101 251 63 50 95

16 56 82 151 66 38 58
Figure 5-28: Total wall time for CP2K/GPU in [s].

NAMD

The performance for NAMD on GPU is reported in Figure 5-29, higher values (green)
indicate a better performance. The best performance for NAMD GPU was obtained on
MareNostrum 5 with a total of 6.56 ns/day using 16 nodes, closely followed by LUMI
with a total of 6.46 ns/day using 16 nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 0.34 0.21 0.45 0.47 0.56 0.27

2 1.12 0.61 0.46 0.84 0.87 0.21 0.45

4 1.86 0.76 0.24 1.45 1.25 0.40 0.80

8 3.42 1.09 0.24 3.05 4.86 0.79

16 6.46 1.38 0.18 4.92 6.56 1.55
Figure 5-29: Performance reported by NAMD/GPU in [ns/day].

 64

Energy usage

For the benchmarks, the reported consumed energy is given in units of [kJ].

CPU

GROMACS

The consumed energy for GROMACS on CPU is reported in Figure 5-30, lower values
(green) indicate a better energy usage. The lowest energy was consumed by MeluXina
using 4 nodes with 326.97 kJ, closely followed by Karolina and Leonardo using 1 node
with respectively 334.05 kJ and 339.05 kJ.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

1 360.16 362.00 362.47 334.05 398.12 339.05 357.69 371.30

2 372.47 386.00 359.22 333.90 437.86 395.10 368.07 372.64

4 391.61 440.00 344.51 352.31 487.24 447.42 401.19 383.56

8 414.44 488.00 353.64 379.58 570.45 563.39 456.98 440.65

16 491.29 691.00 457.11 433.31 863.00 932.68 568.48 544.05

Figure 5-30: Energy usage for GROMACS/CPU in [kJ].

CP2K

The consumed energy for CP2K on CPU is reported in Figure 5-31, lower values
(green) indicate a better energy usage. MareNostrum 5 completed the CP2K CPU
benchmark in 34 seconds using 16 nodes. The lowest energy was consumed by
Deucalion using 1 node with 213.75 kJ, closely followed by Karolina with 216.57 kJ
using 1 node.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

1 294.92 252.00 329.14 216.57 265.07 321.14 213.75 291.05

2 330.93 286.00 367.40 250.65 304.10 416.23 232.90 359.03

4 287.19 322.00 447.95 269.45 338.92 572.71 265.42 421.65

8 473.51 409.00 559.47 488.66 330.81 740.46 317.17 571.28

16 716.28 627.00 770.77 588.12 388.89 1492.97 493.50 794.34
Figure 5-31: Energy usage for CP2K/CPU in [kJ].

NAMD

The consumed energy for NAMD on CPU is reported in Figure 5-32, lower values
(green) indicate a better energy usage. The lowest energy was consumed by LUMI as
well using the same 16 nodes with 978.26 kJ.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

1 1187.32 1100.00 1180.70 1027.15 1829.13 1541.03 1413.09 1161.45

2 1296.20 1100.00 1223.24 1060.93 1870.39 1530.21 1446.58 1226.76

4 1264.26 1190.00 1409.53 1102.18 2241.73 1655.20 1454.59 1436.22

8 1301.04 1170.00 1530.47 1223.17 2564.66 1840.27 1524.36 1457.86

16 978.26 1360.00 1339.35 1440.17 2333.07 1929.51 1173.66 2078.29

Figure 5-32: Energy usage for NAMD/CPU in [kJ].

 65

GPU

GROMACS

The consumed energy for GROMACS on GPU is reported in Figure 5-33, lower values
(green) indicate a better energy usage. The lowest energy was consumed by Vega
using 1 node with 135.42 kJ.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI

1 180.83 181.00 135.42 231.48 151.94 136.81 232.79 159.00

2 249.57 189.00 146.46 271.86 212.24 138.23 353.70 240.00

4 258.09 229.00 170.06 335.65 499.10 160.39 363.21 354.00

8 395.12 334.00 678.87 408.16 439.82 180.81 489.00

16 630.01 545.00 736.15 612.11 800.31 250.89 1154.00
Figure 5-33: Energy usage for GROMACS/GPU in [kJ].

CP2K

The consumed energy for CP2K on GPU is reported in Figure 5-34, lower values
(green) indicate a better energy usage. The lowest energy was consumed by MeluXina
using 1 node with 179 kJ.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 253.35 179.00 217.76 381.05 252.54 252.71 324.28

2 355.49 218.00 271.94 419.43 308.31 332.41 468.38

4 397.70 247.00 292.82 723.56 407.75 309.14 668.31

8 620.25 477.00 936.23 990.64 1612.20 469.34
16 796.12 946.00 1251.58 2104.44 1765.96 578.52

Figure 5-34: Energy usage for CP2K/GPU in [kJ].

NAMD

The consumed energy for NAMD on GPU is reported in Figure 5-35, lower values
(green) indicate a better energy usage. The lowest energy was consumed by VEGA
using 1 node with 354.38 kJ

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 539.28 575.00 354.38 816.90 574.61 824.83

2 383.83 443.00 652.61 871.85 805.60 994.75 938.86

4 454.08 627.00 1319.18 1090.58 1195.85 1058.25 1063.01

8 441.45 832.00 2389.53 1233.31 1183.12 1080.64
16 454.64 910.00 4365.54 1793.60 1925.27 1144.74

Figure 5-35: Energy usage for NAMD/GPU in [kJ].

 66

Energy advantage GPU CPU

For the benchmarks, the reported consumed energy for the CPU is compared relative
to the GPU, the division of the consumed energy of the CPU by the GPU is given.

CPU

GROMACS

The consumed energy for GROMACS on CPU relative to the GPU is reported in Figure
5-36, higher values (green) indicate a better energy usage of the GPU. The lowest
relative energy was consumed by Leonardo using 16 nodes with 3.72 times increased
efficiency on the GPU relative to the CPU.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 1.99 2.00 2.68 1.44 2.62 2.48 1.54

2 1.49 2.04 2.45 1.23 2.06 2.86 1.04

4 1.52 1.92 2.03 1.05 0.98 2.79 1.10

8 1.05 1.46 0.52 0.93 1.30 3.12

16 0.78 1.27 0.62 0.71 1.08 3.72

Figure 5-36: Relative energy usage for GROMACS CPU/GPU.

CP2K

The consumed energy for CP2K on CPU relative to the GPU is reported in Figure
5-37, higher values (green) indicate a better energy usage of the GPU. Leonardo
completed the CP2K benchmark with a 2.58 better efficiency on the GPU using 16
nodes.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 1.16 1.41 1.51 0.57 1.05 1.27 0.66

2 0.93 1.31 1.35 0.60 0.99 1.25 0.50

4 0.72 1.30 1.53 0.37 0.83 1.85 0.40

8 0.76 0.86 0.60 0.49 0.21 1.58

16 0.90 0.66 0.62 0.28 0.22 2.58
Figure 5-37: Relative energy usage for CP2K CPU/GPU.

NAMD

The consumed energy for NAMD on CPU relative to the GPU is reported in Figure
5-38, higher values (green) indicate a better energy usage of the GPU. The best
relative energy usage was performed by MareNostrum 5 on 16 nodes with a 4.21 times
better energy usage of the GPU relative to the CPU.

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

1 2.20 1.91 3.33 1.26 3.58 1.71

2 3.38 2.48 1.87 1.22 1.04 1.54 1.54

4 2.78 1.90 1.07 1.01 1.09 1.56 1.37

8 2.95 1.41 0.64 0.99 4.21 1.70

16 2.15 1.49 0.31 0.80 2.23 1.69

Figure 5-38: Relative energy usage for NAMD CPU/GPU.

 67

6. Conclusion
Chapter 2 describes the benchmarks being used to give an overview of energy
measurements on the different machines. Chapter 3 presents the available EuroHPC
machines, including specifications, measurement tools and other available libraries.
Chapter 4 discusses tools which provide extra information outside of the default data
gathered by Slurm, useful for collecting and/or influencing energy usage, together with
an overview of dashboards available on some sites. Chapter 5 contains the results of
running the benchmarks using GROMACS, CP2K and NAMD, on CPU and GPU,
providing both performance and energy usage data.

It might be tempting to pick to the most “green-ish” machine from the heat maps for
your next computations. However, we suggest to not blindly follow the tables and take
the following remarks into account.

• Different versions of the same program might have been used, or the same
version with different compilation options.

• The placement of the jobs by the scheduler might be different.

• The pinning might be different.

• Energy measurements might be different: output directly from sensors, or via
specific libraries; sampling rate; …

• Even if the hardware is very similar (MeluXina, Vega and Discoverer), results
might be different.

• The number of CPU cores or GPUs might be different.

• Make sure to use full nodes (--exclusive) when comparing machines.

