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Executive Summary 
This document provides practical guidance for users of EPICURE on accessing and 
interpreting power consumption data from various EuroHPC supercomputing systems. 
It outlines the different approaches each system uses to collect, aggregate, and 
expose energy and power measurements, and offers concrete examples and job script 
templates to help users monitor and analyse the energy footprint of their applications. 
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Changes in revision v2.0 
The following changes have been added in version v2.0 relative to v1.0: 

• Benchmarks 
o Figures 

Guidance with each figure. 
o Results 

Guidance with interpreting the data: significance of the results, 
explanation for the outliers in the data 

• Conclusions 
o Measurements 

Comments on the results and the limitations of measuring the power 
consumption of different HPC sites.  
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1. Introduction 
This Best Practice Guide on Power Consumption Measurements in EuroHPC Systems 
provides an overview of how users can access and interpret power consumption data 
across all currently active EuroHPC supercomputers. It describes the tools and 
methods available to monitor and analyse energy usage during computation on these 
systems. 

To support practical application, the guide also includes example job scripts and 
benchmark outputs collected from multiple EuroHPC machines. These resources are 
shared on EPICURE’s shortbench GitLab repository (EPICURE’s shortbench GitLab), 
enabling users to integrate power monitoring into their workflows more effectively.  

https://opencode.it4i.eu/epicure/shortbench
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2. Overview of the benchmarks 
The benchmarks selected for this study are well-known within the HPC community and 
are typically available on all EuroHPC clusters. Each of these applications offers 
options to run on both CPUs and GPUs, allowing us to compare their performance 
and power consumption across different hardware configurations. 

These applications are also widely used across HPC facilities, making the results 
particularly relevant for users deciding which machine best suits their workloads, or 
those seeking practical examples of job scripts and input configurations. 

2.1. CPU 

GROMACS 

About the code 

GROMACS is an open-source, high-performance molecular dynamics (MD) package 
widely used in the life science community It is primarily designed for biochemical 
molecules like proteins, lipids and nucleic acids, but can be used also for non-
biological system like in materials science. 

About the benchmark 

lignocellulose-rf is part of the PRACE Unified European Applications Benchmark Suite 
(UEABS). It simulates a complex lignocellulosic biomass system using reaction-field 
for electrostatics, making it relevant for large-scale simulations and scalability 
benchmarking. 

CP2K 

About the code 

CP2K is an open-source quantum chemistry and solid-state physics software 
package. It is known for its efficiency and scalability on large parallel systems. CP2K 
provides a general framework for different modelling methods such as DFT which is 
the one used in our benchmark input. 

About the benchmark 

H2O-DFT-LS is one of CP2K’s default benchmarks included in its installation package. 
It performs large-scale DFT calculations on water molecules and is commonly used to 
evaluate the scalability and parallel performance of DFT-based simulations on different 
computing architectures. 

NAMD 

About the code 

NAMD is a computer software optimized for high-performance molecular dynamics 
simulations. It is noted for its parallel efficiency and is often used to simulate large 
systems (millions of atoms). 

https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gromacs
https://www.cp2k.org/performance
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About the benchmarks 

20stmv2fs.namd (memory-optimized) and 20stmv2fs-nonopt.namd (non–memory-
optimized) are official benchmarks included with NAMD source code. Both are 
designed to test performance on large biomolecular systems like the Satellite Tobacco 
Mosaic Virus (STMV). 

2.2. GPU 
The same benchmarks were also executed on GPU-accelerated hardware, using the 
same input configurations as on the CPU. This approach enables a direct comparison 
of performance and scalability between CPU-only and GPU-accelerated runs. 

By comparing CPU and GPU results on identical benchmarks, we can better evaluate 
how effectively each code takes advantage of GPU acceleration, as well as quantify 
improvements in both performance and power efficiency when running on GPU-
enabled EuroHPC infrastructures. On systems like MareNostrum 5, Leonardo, and 
LUMI, where both CPU and GPU partitions are part of the same machine and share 
uniform power measurement tools, the comparison becomes especially valuable and 
reliable.  

https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/
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3. EuroHPC systems 
As part of the EPICURE project, we have access to all currently active EuroHPC 
supercomputing systems across participating sites. This unique collaboration enables 
us to run benchmarks and collect power consumption data directly on each of these 
systems, ensuring that the information and examples provided in this guide reflect real, 
up-to-date usage across the entire EuroHPC landscape. 

In this section, we present an overview of each EuroHPC system included in our study. 
For each machine, we describe its architecture, available accelerators (CPU/GPU), 
and the tools or interfaces it provides for monitoring power and energy usage. This 
context will help users understand the capabilities and differences between systems, 
and how to apply the practical examples shared in this guide to their own jobs. 

3.1. LUMI 
LUMI is a pre-exascale EuroHPC supercomputer, supplied by HPE and in production 
since 2022. It is hosted by CSC in its Kajaani data centre in Finland. 

Specifications 

 

Figure 3-1: Overview of a LUMI-G compute node 

GPU partition (LUMI-G) 

• 2928 GPU nodes, detail in Figure 3-1 
o 4 AMD MI250 GPUs (128 GiB GPU memory) 
o 1 AMD Trento host-CPU (512 GiB host memory) 

CPU partition (LUMI-C) 

• 1888 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 256 GiB RAM 

• 128 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 512 GiB RAM 
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• 32 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 1 TiB RAM 

Interactive data-analytics partition (LUMI-D) 

• 8 big-memory nodes, 2 x 64-core 2.25 GHz AMD Rome, 4 TiB RAM 

• 8 visualization nodes, 8 NVIDIA A40 GPUs (48 GiB GPU memory) and 2 x 64-
core 2.25 GHz AMD Milan (2 TiB host memory) 

Measurements 

Energy is measured on node level and job consumed energy is reported through Slurm 
energy accounting. 

Data from pm_counters on node level is available to the administrators. 

Additional info 

Slurm info 

23.02.7; acct_gather_energy / pm_counters  

Extra tools 

Benchmarking environment 

Manual executions 

Performance analysis 

CrayPat, rocprof. Other (Score-P, Scalasca) may be installed using EasyBuild recipes 
found in the LUMI Software Library but are not officially supported. 

Links 

• Main page 
https://www.lumi-supercomputer.eu 

• Documentation 
https://docs.lumi-supercomputer.eu 

• Energy Consumption 
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/ 

• Software Installation 
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/ 

3.2. Leonardo 
Leonardo is a next-generation pre-exascale Tier-0 supercomputer, part of the 
EuroHPC Joint Undertaking, in production since August 2023. It is hosted by CINECA 
at the Bologna Technopole in Italy and it is developed and supplied by EVIDEN ATOS. 

Specifications 

Leonardo is structured into two main compute partitions, both connected via 
DragonFly+ (NVIDIA Mellanox Infiniband HDR) 200 Gbps and managed using Slurm 
workload manager. 

https://www.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
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Booster Partition 

• 3456 heterogenous nodes with 32 cores/node and 4 GPUs/ node 

• Based on single socket Intel Ice Lake CPU (Intel Xeon Platinum 8358, 2.60 
GHz, TDP 250 W) 

• Equipped with NVIDIA Ampere GPUs, 64 GB HBM2e NVLink 3.0 (200 GB/s)  

• 2 x dual port HDR100 per node 

Data Centric General Purpose (DCGP) Partition 

• 1536 nodes with 112 cores/node 

• Based on dual socket 56 cores Intel Sapphire Rapids CPU (2 x Intel Xeon 
Platinum 8480p, 2.00 GHz, TDP 350 W) 

• Single port HDR100 per node 

Measurements 

• Energy can be measured at the node and job level by installing COUNTDOWN, 
for the Booster partition only.  

• GPU energy on Booster can be measured by users via nvidia-smi and NVML. 

• CPU energy can be retrieved by reading RAPL sampling data on Booster and 
DCGP. 

• The CINEMON tool, developed by CINECA staff and based on RAPL and 
NVML power measurements, can be installed on Leonardo cluster to measure 
the overall CPU, RAM, GPU, NODE and JOB energy consumed. Time series 
are currently available, environment variables can be used to adapt the 
sampling period of RAPL and NVML. More information regarding its 
deployment and measurement configurations can be found on the project 
README.md. 

Additional info 

Slurm info 

22.05.10 

Extra tools 

COUNTDOWN, Intel RAPL and NVIDIA NVML, NVIDIA-SMI, CINEMON 

Benchmarking environment 

JUBE 

Performance analysis 

SCORE-P, NSYS, NCU 

Links 

• Main Page  
https://leonardo-supercomputer.cineca.eu 

• Energy usage  
https://leonardo-supercomputer.cineca.eu/hpc-system/#jump-efficiency 

• Documentation  
https://docs.hpc.cineca.it/index.html 

https://github.com/EEESlab/countdown
https://gitlab.hpc.cineca.it/amonteru/cinemon-public.git
https://leonardo-supercomputer.cineca.eu/
https://leonardo-supercomputer.cineca.eu/hpc-system/#jump-efficiency
https://docs.hpc.cineca.it/index.html
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3.3. MareNostrum 5 
MareNostrum 5 is a pre-exascale EuroHPC supercomputer supplied by Bull SAS that 
combines Lenovo ThinkSystem SD650 V3 and Eviden BullSequana XH3000 
architectures, providing two partitions with different technical characteristics. 

Specifications 

MareNostrum 5 GPP (General Purpose Partition) 

The MareNostrum 5 GPP, a general-purpose system, houses 6,408 nodes based on 
Intel Sapphire Rapids (4th Generation Intel Xeon Scalable Processors), along with an 
additional 72 nodes featuring Intel Sapphire Rapids HBM (High Bandwidth Memory). 
This configuration results in a total count of 726,880 processor cores and 1.75PB of 
main memory. The different configuration of nodes within this partition is present 
below: 

• 6192 nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 256 GiB 

• 216 high memory nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 1024 
GiB 

• 72 HBM nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 128 GiB 

• 10 Data nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 2048 GiB 

MareNostrum 5 ACC (Accelerated Partition) 

The MareNostrum 5 ACC accelerated system comprises 1,120 nodes based on Intel 
Xeon Sapphire Rapids processors and NVIDIA Hopper GPUs, offering a total (CPUs 
+ GPUs) of 680,960 compute units. The nodes are configured with the following 
components: 

• 1120 nodes, 2x Intel Xeon Platinum 8460Y+ 40cores, 2.3 GHz, 512 GB, 4x 
NVIDIA Hopper H100 64GB HBM2 

Measurements 

• Energy usage is reported through Slurm energy accounting and the Energy 
Aware Runtime (EAR) tool. 

• On the GPP partition, energy consumption is monitored using both EAR and 
Slurm energy accounting. 

• On the ACC partition, energy consumption is monitored using EAR only. 

Additional info 

Slurm info 

23.02.7 

Extra tools 

EAR 
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Benchmarking environment 

JUBE 

Performance analysis 

TALP, Extrae and Paraver 

Links 

• Main Page  
https://www.bsc.es/supportkc/docs/MareNostrum5/intro/ 

• Job Submission  
https://www.bsc.es/supportkc/docs/MareNostrum5/slurm 

3.4. MeluXina 
The system is in production since November 2021. The supercomputer is based on 
Atos Sequana XH2000, with 813 compute nodes, which are interconnected with 
InfiniBand (Dragonfly+ topology). 

Specifications 

CPU partition 

• 573 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 512GiB RAM 

GPU partition: 

• 200 GPU nodes 4x Nvidia A100 40 GiB HBM2, 2x AMD Rome 7452 (32c, 2.3 
GHz, 155W), 512 GiB RAM 

Large memory partition 

• 20 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 4 TiB RAM 

FPGA partition 

• 20 FPGA nodes, 2x BittWare 520N-MX 16 GiB HBM2 (Intel Stratix 10MX chip), 
2x AMD Rome 7452 (32c, 2.3 GHz, 155W), 512 GiB RAM 

Measurements 

• Energy is measured on node level and job consumed energy is reported 
through Slurm energy accounting.  

• Data from IPMI sensors on node level is available to admins. 

• For FPGA cards, we use the bittware minitor executable which is only available 
to admins. 

Additional info 

Slurm info 

23.11.9; acct_gather_energy / ipmi 

https://www.bsc.es/supportkc/docs/MareNostrum5/intro/
https://www.bsc.es/supportkc/docs/MareNostrum5/slurm
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Extra tools 

Benchmarking environment 

Reframe 

Performance analysis 

Score-P, perf, Intel VTune, NVIDIA Nsight Systems 

Links 

• Main page  
https://docs.lxp.lu 

• Energy usage 
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring 

3.5. Karolina 
Karolina is HPE Apollo (Apollo 200 and Apollo 6500) system with fully non-blocking 
fat-tree InfiniBand interconnect. The system is in operation from Q2 of 2021. The 
Karolina cluster consists of several partitions which together gives over 15.7 PFLOP/s 
theoretical peak performance. 

Specifications 

CPU partition 

• 720 nodes, 2 x AMD Zen 2 EPYC 7H12 (280W TDP), 256 GiB DDR4 

GPU partition 

• 72 nodes, 8 x NVIDIA A100 (40 GiB HBM2) (400 W TDP), 2 x AMD Zen 3 EPYC 
7763 (280 W TDP), 1024 GiB DDR4 

Measurements 

In the Karolina system, MERIC energy efficient HPC software suite is deployed. 
Using its Job budgeting service every user may read energy consumption of jobs 
executed under the project the user participates in. Administrators can access all jobs. 
It is also possible to extract energy consumption of a project, a cluster, a user, or 
specific period. In login nodes, a command line utility get_energy is available for users.  

The MERIC Job budgeting service on Karolina provides job energy consumption at 
several levels: 

• CPU energy consumption – In band (performance counters). 

• GPU energy consumption – In band (performance counters), if GPUs 
available. 

• Node energy consumption – Combination of CPU and GPU energy 
consumption (high frequency power sampling, typically 1kHz) and Out-of-Band 
power monitoring of the node (low frequency, typically 0.017 up to 1 Hz). 

• Overall energy consumption – Node energy consumption multiplied by 
system Power Usage Effectiveness (PUE) at the moment of the job execution.  

https://docs.lxp.lu/
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring
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• CO2e – Overall energy consumption multiplied by carbon intensity 
(gCO2eq/kWh) at the moment of the job execution. The source of the carbon 
intensity can be site-specific, or universal solution reading the data from 
https://app.electricitymaps.com/, which provides the carbon intensity per region 
(in Europe typically per country). 

Besides the command line utility which prints the CO2e and energy consumption at all 

the levels, the Job budgeting service also provides web interface which in addition 

presents power consumption timeline (power consumption of each CPU, each GPU, 

each node) during the job. The timeline granularity is 0.017 Hz (one sample per 

minute) presenting average power consumption during the past minute. 

For users, MERIC runtime system (used as a user-tool instead of runtime system) is 

available as a software module to measure energy consumption per application 

execution using command line utility, or energy consumption and energy-efficiency 

metrics per application region if linked with the library and application's regions of 

interest instrumented. See section 4.3 for more details. 

Administrators have additional power monitoring dashboards presenting power and 

temperature level per node and chassis in a rack, per rack, cluster and other 

infrastructure levels according to site-specific availability. 

Energy efficiency optimization 

From February 2023 the Karolina cluster is operated in the static energy efficient 
mode, which reduces CPU core frequency limit of CPU partition from 3.3 GHz to 2.1 
GHz, and GPU SMs frequency limit of GPU partition from 1.41 GHz to 1.29 GHz. 

Additionally, a group of users (extended on request) may access CPU and GPU power 

management knobs to optimize energy efficiency of the executed workload. MERIC 

runtime system is available as a software module to expose these knobs and provide 

static and automatic dynamic tuning to improve executed application energy efficiency. 

See section 4.3 for more details. 

Additional info 

Slurm info 

23.11.10 

Extra tools 

MERIC 

Benchmarking environment 

Gitlab runners with Jacamar CI driver available in IT4Innovations' GitLab (available to 
all system users) which allows to execute continuous integration and continuous 
benchmarking jobs in compute nodes. 

Performance analysis 

POP CoE tools (Score-P, Scalasca, Extrae, MAQAO, DLB, MERIC, MUST, CARM), 
NVIDIA Nsight Systems, Linaro's software tools, Intel Advisor, Intel VTune, AMD μProf 

https://app.electricitymaps.com/
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Links 

• Main page  
https://docs.it4i.cz/karolina/introduction/ 

• Energy usage  
https://docs.it4i.cz/general/energy/?h=energy 

• Meric Suite  
https://code.it4i.cz/energy-efficiency/meric-suite 

• POP tools  
https://pop-coe.eu/ 

3.6. Discoverer 
The system is in production since September 2021. The supercomputer is based on 
Atos Sequana XH2000, with 1128 compute nodes, which are interconnected with 
InfiniBand (Dragonfly+ topology). 

Specifications 

CPU partition 

• 1110 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM 

Large memory partition:  

o 18 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM 

Discoverer+ GPU partition 

• 32 (4 × 8) NVIDIA H200 GPU accelerators, 448 (112 × 4) hardware CPU cores, 
7.84 (1.96 × 4) TiB RAM 

Measurements 

Energy is measured on node level and job consumed energy is reported through 
custom web-based interface. 

Data from IPMI sensors on node level is available to administrators. 

Additional info 

Slurm info 

20.02.6-Bull.1.1 

Extra tools 

Benchmarking environment 

Manual executions 

Performance analysis 

Intel Vtune, NVIDIA Nsight, perf, AMD μProf, Score-P, TAU, HPCToolkit. 

https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/
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Links 

• Main page  
https://docs.discoverer.bg/index.html 

3.7. Vega 
The system is in production since April 2021. The supercomputer is based on Atos 
Sequana XH2000, with 1020 compute nodes, which are interconnected with InfiniBand 
(Dragonfly+ topology). 

Specifications 

CPU partition 

• 768 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM 

• 192 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM  

GPU partition 

• 60 GPU nodes 4 x Nvidia A100, 2 x AMD Rome 7H12, 512 GiB RAM 

Measurements 

Energy is measured on node level and job consumed energy is reported through Slurm 
energy accounting (IPMI).  

Data from IPMI sensors on node level is available to admins. Kernel module for RAPL 
is loaded but not readable for users. 

Additional info 

Slurm info 

24.11.4; acct_gather_energy/ipmi 

Extra tools 

NVML 

Benchmarking environment 

Manual Execution. 

Performance analysis 

LIKWID, TotalView, Score-P, perf, Intel VTune, PAPI, nways, ... 

Links 

• Main page  
https://www.izum.si/en/hpc-en/ 

• Energy usage  
https://doc.vega.izum.si/energy-usage/ 

https://docs.discoverer.bg/index.html
https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/
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3.8. Deucalion 
Deucalion is a peta-scale EuroHPC supercomputer, supplied by Fujitsu (currently Fsas 
Technologies) and in production since June 2024. It is hosted by FCT at Universidade 
do Minho in Guimarães, Portugal. 

Deucalion has 3 partitions: one partition based on the Fujitsu ARM A64FX processors, 
one based on AMD Epyc 7742 processors (2 sockets per node) and an accelerated 
partition based on AMD Epyc 7742 accelerated with Nvidia A100 GPUs (4 per node, 
including both A100 with 40 and 80 GiB of VRAM). 

The ARM partition is interconnected with Infiniband HDR Fat-Tree with 1:1.6 blocking 
factor and the AMD and GPUs partitions are interconnected with Infiniband HDR Fat-
Tree with 1:1 non-blocking. 

Specifications 

CPU (A64FX) partition 

• 1632 ARM FX700 nodes, Fujitsu’s A64FX (48c, 2.0 GHz), 32 GiB RAM 

CPU (x86) partition 

• 500 nodes, 2x AMD Epyc 7742 (64c, 2.25 GHz), 256 GiB RAM 

GPU partition 

• 17 nodes, 4 x Nvidia A100 GPUs (40 GiB GPU memory), 2 x AMD Epyc 7742 
(64c, 2.25 GHz), 512 GiB RAM 

• 16 nodes, 4 x Nvidia A100 GPUs (80 GiB GPU memory), 2 x AMD Epyc 7742 
(64c, 2.25 GHz), 512 GiB RAM 

Measurements 

Deucalion uses the MERIC energy-efficient HPC software suite, the same as Karolina 
(See section 3.5). 

Additional info 

Slurm info 

23.11.8 

Extra tools 

MERIC 

Benchmarking environment 

Manual Execution 

Performance analysis 

POP CoE tools (Score-P, Scalasca, MAQAO, DLB, MERIC), Intel Vtune 
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Links 

• Main page  
https://docs.deucalion.macc.fccn.pt 

3.9. JUPITER 
JUPITER, the “Joint Undertaking Pioneer for Innovative and Transformative Exascale 
Research", will be the first exascale supercomputer in Europe. The system is provided 
by a ParTec-Eviden supercomputer consortium and was procured by EuroHPC JU in 
cooperation with the Jülich Supercomputing Centre (JSC). It is installed in the 
Forschungszentrum Jülich campus in Germany. 

Specifications 

JUPITER Booster consists of ~6000 standard compute nodes 

• 4 × NVIDIA GH200 Grace-Hopper Superchip (see Figure 3-2) 
o CPU: NVIDIA Grace (Arm Neoverse-V2), 72 cores at 3.1 GHz base 

frequency; 120 GiB LPDDR5X memory at 512 GiB/s (8532 MHz) 
o GPU: NVIDIA Hopper H100, 132 multiprocessors, 96 GiB HBM3 

memory at 4 TiB/s 
o NVIDIA NVLink-C2C CPU-to-GPU link at 900 GiB/s 
o TDP: 680 W (for full GH200 superchip) 

• NVLink 4 GPU-to-GPU link, 300 GiB/s between pairs of GPUs (150 GiB/s per 
direction) 

• Network: 4 × InfiniBand NDR200 (Connect-X7) 

 

Measurements 

LLview (see section 4.6) can report power metrics (in Watts) at several levels, i.e. node 
power, CPU/GPU power, superchip power. 

Additional info 

Figure 3-2: Node diagram of the 4× NVIDIA GH200 node design of JUPITER Booster. 

https://docs.deucalion.macc.fccn.pt/
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Slurm info 

Extra tools 

LLview 

Benchmarking environment 

JUBE 

Performance analysis 

Score-P, Scalasca, CUBE, Vampir 

Links 

• Main page  
https://jupiter.fz-juelich.de/ 

• LLview 
https://llview.fz-juelich.de/ 

  

https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/
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4. Tools 

4.1. Slurm 
SLURM is an open-source, fault-tolerant, and highly scalable workload manager 
designed for both large and small Linux clusters. 

For power management, SLURM offers plugins that collect energy consumption data 
on a per-job basis. These plugins can use various hardware interfaces, such as IPMI, 
RAPL counters, or external scripts, depending on what is available on the system. The 
collected data is stored alongside each job and can be retrieved later using the sacct 
command, as described below. 

More details about SLURM’s power measurement options can be found in the Slurm 
documentation on AcctGatherEnergyType. 

In the benchmarks presented in this document, when power data was obtained 
through SLURM, we used the commands given in Figure 4-1 to report the job type and 
the corresponding energy consumption. 

4.2. EAR 
EAR software is a management framework optimizing the energy and efficiency of a 
cluster of interconnected nodes. To improve the energy of the cluster, EAR provides 
energy control, accounting, monitoring and optimization of both the applications 
running on the cluster and of the overall global cluster. 

At EAR’s core is a monitoring tool which gathers data on the nodes and on the 
applications running on the cluster. Therefore, on top of optimizing the energy 
consumed by the applications running on the cluster and the overall global cluster, 
EAR reports system and application information. 

EAR components are the EAR library (EARL), EAR DB manager (EARDBD), EAR 
Daemon (EARD), EAR Slurm plugin (EARplug) and EAR Global Manager (EARGM). 
EAR offers a highly configurable and extensible infrastructure for energy management. 
Last version of EAR includes a plugin mechanism to dynamically load power policies, 
power and time models, energy readings and application traces generation. To offer a 
simple install and test approach, EAR includes default powerful plugins for all these 
features. Slurm is the batch scheduler full compatible with EAR thanks to EAR's Slurm 
SPANK plug-in. With EAR's Slurm plug-in, running an application with EAR is as easy 
as submitting a job with either srun, sbatch or mpirun. The EAR Library (EARL) is 
automatically loaded with some applications when EAR is enabled by default.  

$ sacct -j jobid.0 \ 
> -o nnodes,ntasks,ncpus,consumedenergy,consumedenergyraw, elapsed,elapsedraw 

 Figure 4-1:The command to report the job type and the energy consumption. 

https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
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EAR Features 

The following list highlights the main functionalities and features provided by EAR. 
While the accompanying examples are demonstrated on the MareNostrum 5 
supercomputer, these capabilities are designed to be available in any standard 
installation of EAR. 

EAR job Accounting 

The eacct command shows accounting information stored in the EAR DB for jobs (and 
steps) IDs. The command uses EAR's configuration file to determine if the user 
running it is privileged or not, as non-privileged users can only access their 
information. It provides the following options. 

Usage examples 

The basic usage of eacct retrieves the last 20 applications (by default) of the user 
executing it. If a user is privileged, they may see all users’ applications. The default 
behaviour shows data from each job-step, aggregating the values from each node in 
said job-step. If using Slurm as a job manager, a sb (sbatch) job-step is created with 
the data from the entire execution. A specific job may be specified with -j option. 

 

For node-specific information, the -l (i.e., long) option provides detailed accounting of 
each individual node. If EARL was loaded during an application execution, runtime 
data (i.e., EAR loops) may be retrieved by using -r flag. An example of both their usage 
is shown below. 

 

To easily transfer the output from eacct, you can use the -c option to save the 
requested data in CSV format. This can be done as follows: 

[user@host EAR]$ eacct -j 21382481-c test.csv  

Figure 4-4: Saving the output of eacct to test.csv. 

Figure 4-2: Output obtained using the eacct command for a specific job. 

Figure 4-3: eacct showing detailed accounting of each node. 

https://oos.eduuni.fi/ear_team/ear/-/wikis/EAR-commands
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If successful, you’ll see a message like: 

Successfully written applications to csv. Only applications with EARL will 
have its information properly written. 

Figure 4-5: The success message from the EAR application. 

Example: Using EAR with Slurm+srun on MareNostrum5 

When submitting jobs with sbatch, EAR options can be specified using the ear module, 
available in both partitions. For example: 

#SBATCH --ear=on             # Enable Energy-Aware Runtime (EAR) monitoring 
#SBATCH --ear-verbose=1      # Enable verbose EAR output 
 
module load ear              # load the ear module 
mkdir -p ear_metrics         # create directory to store EAR results 
 
srun --ear-user-db=ear_metrics/app_metrics gmx_mpi mdrun \ 
   -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200 

Figure 4-6: Example job script using EAR on MareNostrum 5 

EAR policies 

EAR offers three energy policies plugins: min_energy, min_time and monitoring. The last 

one is not a power policy, is used just for application monitoring where CPU frequency 
is not modified (neither memory nor GPU frequency). The energy policy is selected by 
setting the --ear-policy=policy option when submitting a Slurm job. A policy 
parameter, which is a particular value or threshold depending on the policy, can be set 
using the flag --ear-policy-th=value. 

min_energy 

The goal of this policy is to minimise the energy consumed with a limit to the 
performance degradation. This limit is set in the Slurm --ear-policy-th option or the 
configuration file. 

min_time 

The goal of this policy is to improve the execution time while guaranteeing a minimum 
ratio between performance benefit and frequency increment that justifies the increased 
energy consumption from this frequency increment. 

For instance, if --ear-policy-th=0.70, EAR will prevent scaling to upper frequencies if 
the ratio between performance gain and frequency gain do not improve at least 70% 
(PerfGain ≥ FreqGain ⋅ Threshold).  

srun --ear-policy=min_energy \ 
    --ear-user-db=more_test_min_energy/app_metrics gmx_mpi mdrun \ 
    -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200 

Figure 4-7: Selecting min_energy in a Slurm job. 
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Figure 4-8: Example job script using EAR on MareNostrum 5 

  

srun --ear-policy=min_time --ear-policy-th=0.70 \ 
    --ear-user-db=more_test_min_time/app_metrics gmx_mpi mdrun \ 
    -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200 

Figure 4-9: Selecting min_time policy in a Slurm job. 

CPU Frequency selection in EAR 

Within EAR, you can manually select a CPU frequency in combination with a specific 
optimization policy. 

• Use the --ear-policy=policy_name flag to select the desired policy. 

• Use the --ear-cpufreq=value flag to specify the desired CPU frequency.  
 The value must be provided in kHz (e.g., 2000000 for 2.0 GHz). 

We evaluated the performance and energy consumption of GROMACS on two nodes 
using different EAR policy and threshold values. 

• Without EAR, the performance was 55.856 ns/day. 

Min-Time Policy: 

• With the default threshold value (--ear-policy-th=0.65), performance was 
53.363 ns/day. 

• Using --ear-policy-th=0.70,  
 performance slightly decreased to 53.215 ns/day. 

Min-Energy Policy: 

• With the default threshold (--ear-policy-th=0.05), performance increased to 
56.635 ns/day. 

• Using a higher threshold (--ear-policy-th=0.10), performance was 55.084 
ns/day. 

Monitoring Policy (CPU Frequency Scaling): 

• At 2.0 GHz, performance was 55.722 ns/day. 
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• At 1.9 GHz, performance was 56.216 ns/day. 

• At 1.8 GHz, performance dropped to 56.138 ns/day. 

The energy consumption of GROMACS configuration is shown below: 

Configuration Performance 
(ns/day) 

Energy(J) 

GROMACS (No EAR) 55.856 238297 

GROMACS (threshold=0.65) 53.363 232404 (min_time) 

GROMACS (threshold=0.70) 53.215 219767 (min_time) 

GROMACS (threshold=0.05) 56.635 223957 (min_energy) 

GROMACS (threshold=0.10) 55.084 218022 (min_energy) 

GROMACS (freq=2 GHz) 56.322 207252 (monitoring) 

GROMACS (freq=1.9 GHz) 56.216 238364 (monitoring) 

GROMACS (freq=1.8 GHz) 56.138 239232 (monitoring) 

 

Links 

• EAR Policies  
a complete guide on EAR policies (official documentation)  
https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies  

• Example job scripts  

Slurm job scripts using EAR are included in the “shortbench” repository of 

EPICURE’s GitLab (see section 5.1)  
Platforms/MareNostrum5/<partition>/<benchmark>/<benchmark>_job.sh 

• Results 

the results from the examples from above can be found in:  
Platforms/MareNostrum5/EAR_metrics/<partition>/<benchmark>/ 

• EAR user guide  

a complete user guide on using EAR (official documentation)  

https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide.  

https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies
https://opencode.it4i.eu/epicure/shortbench
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide
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4.3. MERIC runtime system 
MERIC runtime system from the MERIC energy efficient HPC software suite is one of 

the flagship codes of Performance Optimisation and Productivity (POP) EuroHPC 

Centre of Excellence (CoE). As a CoE flagship code, the MERIC is being deployed as 

public software module to all EuroHPC systems to provide energy consumption 

measurement, and in some systems also power management (currently Karolina, and 

Deucalion). Thanks to the MERIC, the user has unified interface to read energy 

consumption despite the underlying hardware is different, using a hardware-specific 

power monitoring system, or the energy consumption is exposed by one of many 

possible ways.  

The user may use a command line utility to measure energy consumption of an 

application complete execution or link the application with MERIC library and 

instrument application's regions of interest.  

 

 

mericStatic -e RAPL,NVML -- start & 
/path/to/benchmark [app params] 
 
mericStatic -- stop 
mericStatic – eval 

Figure 4-10: Example single-node usage of the mericStatic command line utility to measure energy 

consumption using RAPL and NVML performance counters.  

mpirun -np $nnodes --map-by ppr:1:node mericStatic -e RAPL,NVML -- start &  
# srun --overlap --ntasks-per-node 1 --nodes $nnodes mericStatic \ 
#    -e RAPL,NVML -- start & 
 
srun /path/to/benchmark [app params] 
 
mpirun -np $nnodes --map-by ppr:1:node mericStatic – stop 
# srun  --ntasks-per-node 1 --nodes $nnodes mericStatic -- stop 
 
mericStatic -- eval 

Figure 4-11: Example multi-node usage of the mericStatic command line utility using srun or mpirun to start 

and stop the measurement in all allocated nodes ($nnodes). 
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Runtime [s] = 279.835 
PCKG_ACTIVE_CORES_AVG_0 [J] = 858.128 
PCKG_ACTIVE_CORES_AVG_1 [J] = 837.706 
PCKG_0 [J] = 58676.202 
PCKG_1 [J] = 59319.097 
 
RAPL Energy consumption [J] = 117995.299 
RAPL Energy consumption [Wh] = 32.776 
 
Runtime [s] = 279.835 
GPU_0 [J] = 21789.773 
GPU_1 [J] = 22634.641 
GPU_2 [J] = 21576.006 
GPU_3 [J] = 21356.166 
GPU_4 [J] = 20476.886 
GPU_5 [J] = 20994.002 
GPU_6 [J] = 20145.965 
GPU_7 [J] = 21866.124 
 
NVML Energy consumption [J] = 170839.563 
NVML Energy consumption [Wh] = 47.455 

Figure 4-12: Example output of the mericStatic -- stop command from a single node of Karolina equipped 

with two AMD EPYC CPUs and eight Nvidia GPUs (benchmark executed in two compute nodes). 

  

MERIC requires that user specify what power monitoring to use. Thus, user must know 

which ones are available in the system. For that purpose, the user may use the 

systemInfo MERIC utility, which prints details about the underlying hardware and its 

power monitoring and power management possibilities. 

job_id :2685249 
job_id :2685249 
Max Runtime [s] = 279.881 
NVML Energy consumption [J] = 338331.189 
RAPL Energy consumption [J] = 235217.793 
 
Total Energy consumption [J] = 573548.982 
Total Energy consumption [Wh] = 159.319 

Figure 4-13: Example output of the mericStatic -- eval command summarising measurement from all used 

compute nodes (the same measurement as in Figure 4-12). 
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# SYSTEM INFORMATION 
        CPU name:         AMD EPYC 7763 64-Core Processor 
        Sockets per Node: 2 
        Cores per Socket: 64 
        Threads per Core: 1 
        GPU name:         NVIDIA A100-SXM4-40GB 
        GPUs per node:    8 
  
# CPU FREQUENCIES 
        Turbo CPU core frequencies:  3525000 kHz 
        Nominal CPU core frequency:  2450000 kHz 
  
# GPU FREQUENCIES 
        Memory: 1215000 kHz     SM: 1410000 - 210000 kHz (81 steps) 
        Default memory frequency: 1215000 kHz 
        Default streaming multiprocessor frequency: 1095000 kHz 
  
# CPU POWER LIMITS 
        CPU max power limit:     280 W 
        CPU power limit:             280 W 
  
# GPU POWER LIMITS 
        GPU max power limit:     400 W 
        GPU min power limit:     100 W 
        GPU default power limit: 400 W 
  
# AVAILABLE POWER MONITORING SYSTEMS 
        RAPL 
        NVML 

Figure 4-14: Output of the systemInfo utility when executed in a Karolina accelerated node. 

Slurm job scripts using mericStatic utility can be found in the shortbench repository of 

EPICURE’s GitLab (see section 5.1) in  

Platforms/Karolina/<partition>/<benchmark>/<benchmark>_job_meric.sh. 

See MERIC runtime system user guide for more information on how to use MERIC to 

instrument an application, and how use MERIC to optimize an application energy 

efficiency. 

https://code.it4i.cz/energy-efficiency/meric-suite/meric  

https://opencode.it4i.eu/epicure/shortbench
https://code.it4i.cz/energy-efficiency/meric-suite/meric
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4.4. COUNTDOWN 
COUNTDOWN is a power management tool able to track MPI and application phases 
to automatically reduce power consumption of the computing elements during MPI 
communication and synchronization. The tool intercepts all MPI calls and execute the 
communication via an equivalent PMPI call, but after and before a prologue and an 
epilogue routine. These routines are defined in the “profile” and “event” COUNTDOWN 
modules, supporting monitoring and power management, respectively. Environment 
variables can be set to control the kind of HW performance counter, the configuration 
of the monitoring/management or the verbosity of logging. COUNTDOWN can be 
preloaded at runtime without source code modifications, or if needed it also provides 
a static-linking library to be used at compile time. 

COUNTDOWN implements three complementary profiling strategies to monitor 
application behaviour at varying levels of granularity: 

1. MPI Profiler  
This component collects detailed information about the MPI activity of each 
process. It records MPI communicators, groups, and the core ID where the 
process is running. These metrics help characterize communication behaviour 
and detect potential inefficiencies. 

2. Fine-Grain Micro-Architectural Profiler  
Running in parallel with the MPI profiler, this component gathers micro-
architectural metrics at every MPI call using the RDPMC instruction in user 
space to access Intel’s Performance Monitoring Units (PMUs). It records values 
such as average core frequency, Time Stamp Counter (TSC), and instructions 
retired. Up to 8 configurable counters are available, allowing users to monitor 
application-specific low-level performance events. This fine-grain insight is 
valuable for identifying computational inefficiencies within MPI regions. 

3. Coarse-Grain Profiler  
This profiler samples a broader range of hardware performance counters, 
including TSC, instructions retired, frequency, temperature, and C-state 
residencies at both core and uncore levels. It also monitors energy consumption 
and power usage using Intel’s Running Average Power Limit (RAPL) interface. 
Because access to these low-level hardware counters typically requires 
elevated privileges, COUNTDOWN uses the msr_safe driver. This driver 
enables secure access for standard users to a restricted subset of privileged 
architecture registers without compromising system security. Due to the 
overhead of frequent sampling, this profiler operates on a time-based interval: 
data is collected only if a predefined time Ts has passed since the last sample. 
The fine-grain profiler checks this interval and, if exceeded, triggers a new 
coarse-grain sample to maintain synchronization. 

Detailed data from the MPI profiler is stored in binary format to manage file size during 
long executions. In parallel, a human-readable text summary is also generated to 
provide an accessible overview of profiling results. 

CNTD source code can be downloaded from:  

https://github.com/EEESlab/countdown.git  

https://github.com/EEESlab/countdown.git
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The installation, using CMake, must be configured with the same MPI and compiler 

used for the application. A basic installation on Leonardo Booster can be achieved, for 

example, with the following commands 

where -DCNTD_ENABLE_CUDA=ON is needed to profile GPU metrics. For additional 
configuration options, the user can rely on installation instructions in 
https://github.com/EEESlab/countdown/blob/develop/README.md. 

For the sampling approach of CNTD, the user needs to preload the library libcntd.so; 

the measurement can be customized with parameters setting, for example, the 

sampling interval and the name of the output directory.  

module purge 
module load openmpi/4.1.6--gcc--12.2.0 
module load cuda/12.1 
cmake -DCNTD_ENABLE_CUDA=ON ../ 
make 

Figure 4-15: Basic installation of CNTD. 

https://github.com/EEESlab/countdown/blob/develop/README.md
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The default measurement configuration will provide tables with the following metrics: 

• execution time, 

• parallel information (number of MPI tasks, GPUs, nodes), 

• energy of the job (PKG, DRAM, GPU), 

• average power (PKG, DRAM, GPU), 

• performance information (Time in MPI communications, maximal memory 
usage, CPU frequency, ...), 

• GPU reporting (utilization, memory, temperature), 

• more detailed information about MPI.  

#!/bin/bash 
#SBATCH --nodes=1 
#SBATCH --ntasks-per-node=4 
#SBATCH --cpus-per-task=8 
#SBATCH --time=00:20:00 
#SBATCH --exclusive 
#SBATCH --gres=gpu:4 
#SBATCH --partition=boost_usr_prod 
  
module purge 
module load profile/lifesc  
module load gromacs/2022.3--openmpi--4.1.6--gcc--12.2.0-cuda-12.1 
 
export OMP_NUM_THREADS=8 
export OMP_PLACES=cores 
export OMP_PROC_BIND=close 
   
export GMX_ENABLE_DIRECT_GPU_COMM=1 
  
export CNTD_SAMPLING_TIME=0.1 
export CNTD_OUTPUT_DIR=CNTD 
export LD_PRELOAD=<path-to-installation>/src/libcntd.so 
 
srun -n 4 --cpu-bind=cores --cpus-per-task=$SLURM_CPUS_PER_TASK \ 
    gmx_mpi mdrun -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 \ 
    -nstlist 200 -dlb yes 

Figure 4-16: Example job script using CNTD. 
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4.5. RAPL and NVIDIA NVML 
Intel and AMD performance counters are exposed using tools and plugins like perf, 
intel_rapl, amd_energy, msr_safe, EAR, MERIC, GEOPM, COUNTDOWN, and many 
more. Each EuroHPC site uses a different interface to expose these counters. MERIC 
provides unified way to read RAPL from them all. It has been deployed already on 
several EuroHPC systems. 

Similarly, information provided by NVML is used by MERIC and COUNTDOWN. 

4.6. Dashboards 

BSC HPC | User Portal 

The “HPC User Portal” (https://hpcportal.bsc.es/) is a job and resource monitoring 
platform designed with the needs of HPC users in mind. It allows users to check the 
status and general resource usage metrics of their submitted jobs. In addition, the 
portal provides machine statistics, such as the number of available and allocated 
CPUs, for BSC's primary HPC systems. The platform is still under active development 
and will progressively offer more features over time. Currently, for the Accelerated 
(ACC) partition, power consumption data is not yet available, but it is being worked on. 
Some of the features provided by HPC portal are listed below: 

Job monitoring 

The main page of the HPC User Portal is the job monitoring screen. It will list all your 
jobs launched in all the machines by every account you have. This list contains a brief 
listing of the general characteristics of each job (like its name, user, status, node/task 
configuration...). If the job listed is in the “running” status, it will also show you the 
current CPU and memory usage. 

 

 

Once a specific job is selected, we get the job details: 

Figure 4-17: Main page of the HPC User Portal. 

https://hpcportal.bsc.es/
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CPU usage, memory usage and power consumption are also provided. 

 
  

 

Figure 4-20: CPU usage. 

 

Figure 4-21: Memory usage. 

  

Figure 4-18: Job details. 

Figure 4-19: Power consumption. 
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LLview 

LLview is a set of software components for monitoring clusters controlled by a 
resource manager and scheduler system. It collects existing data from the system and 
presents it to the user via a web portal. (https://llview.fz-juelich.de/) 

At JSC, LLview collects data from the Slurm workload manager, various daemons 
running on compute nodes, and sensors that either log information to files or interface 
with the Prometheus monitoring system. LLview then aggregates and reorganises the 
monitoring data, stores the information required for reporting in separate SQLite 
databases and presents it to the user via a web-based front-end portal. 

The LLview Job Reporting web portal provides: 

• job list tables, containing their aggregated performance information (for jobs 
that are running or have already finished within three weeks), 

• timeline graphs per job for the key performance metrics, 

• access to detailed job reports, including an interactive report or a static PDF 
version, 

• role-based access to different levels of information, 

• live view of the system. 

In Figure 4-22, a snapshot of the Jobs Dashboard shows a table with one job per row 
and each column containing one of its metrics. Some columns are colour coded to 
indicate potential problems. Detailed job reports can be accessed in the rightmost 
columns. Selecting a row displays aggregated graphs at the bottom of the page. 

 

The dashboard provides a wide range of metrics, grouped into the following 
categories: 

• Job metadata  
Job ID, username, project id, start time, estimated end time, 

• CPU  
average CPU usage, number of active physical/logical cores, memory usage, 

Figure 4-22: LLview Job reporting web portal. 

https://llview.fz-juelich.de/
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• GPU  
GPU utilization, memory usage, temperature and performance states, 
indicators for potential throttling or reduced performance, 

• I/O and network activity  
read/write throughput, file open/close operation rates, data and packet 
input/output rates. 

This comprehensive set of metrics enables users to monitor system performance, 
detect inefficiencies, and troubleshoot job behaviour effectively. 

A significant recent enhancement to the LLview is the support for multiple levels of 
power telemetry data. This addition allows granular and comprehensive tracking of 
power consumption during job execution. Currently supported power metrics include: 

• Node Power  
the total power draw for the entire node at the moment of sampling, 

• CPU Power  
the instantaneous power consumed by the CPU package, including its memory 
controllers and system I/O, 

• GPU Power  
the current power draw of each GPU device, including its onboard memory 

• Superchip Power  
the power usage for each “superchip” (i.e. combined Grace and Hopper 
modules). 

Energy consumption is calculated by aggregating power consumption data collected 
at one-minute intervals throughout the duration of a job. The resulting energy values 
are presented in a variety of units, including watt-hours (Wh), megajoules (MJ) and 
kilowatt-hours (kWh), providing flexibility for different analysis needs.  

Figure 4-23 illustrates the display of power and energy values on the LLview web 
portal. The metrics highlighted within the red frame represent power and energy 
values, with each row corresponding to an individual job. For the currently selected 
job (indicated by the yellow highlighted row), detailed energy metric timelines are 
displayed at the bottom. These timelines provide a temporal view of power 
consumption, simplifying analysis of energy usage patterns throughout the job's 
execution. 
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IT4Innovations User Portal and SCS Information System 

For information about the current clusters’ usage, IT4I users can go to User Portal 
https://extranet.it4i.cz/rsweb. They can switch between the clusters by clicking on their 
names in the upper right corner. Users can filter their search by clicking on the 
respective keywords. 

In addition to general information about the jobs, like runtime, queue, etc., the portal 
now also contains information about CPU, GPU, and entire node energy consumption 
for any job. Users can also check the power consumption timeline of selected 
components of the compute nodes. Examples of these reports are shown in the figures 
below. 

Figure 4-23: Power and energy values displayed on LLview web portal. 

https://extranet.it4i.cz/rsweb
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The IT4Innovations Information System (SCS IS) (https://scs.it4i.cz) is a 
comprehensive platform for managing the lifecycle of HPC projects. It allows users 
and primary investigators to manage project applications, memberships, and 
resources from the initial request through to completion. 

During the project's active phase, the system provides detailed monitoring capabilities. 
This includes tracking the usage of allocated computing resources, which are 
measured in node hours, against the approved allocation. As shown in the provided 

Figure 4-24: Example of job information provided to users, including energy consumption of CPUs and GPUs. 

Figure 4-25: Users can also visualize the power consumption of their job in time. This example shows the power 
consumption of individual GPUs on a selected compute node. 

https://scs.it4i.cz/


 

 39 

image, the system also offers a specific “Energy Consumption” report. This report 
details the energy used in MegaJoules (MJ) and Kilowatt-hours (kWh), and the 
associated carbon footprint in CO₂ (kg), with data broken down by CPU, GPU, and 
node usage. 

 

  

Figure 4-26: Example of energy consumption of CPUs, GPUs and nodes per project. 
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5. Overview 

Since not all machines use the same metrics (see the “Measurements” section for the 
different machines), the plots shown are just an indication. Moreover, energy usage 
by e.g. network components or storage is not measured. If in the future one runtime 
system would be available on all machines, it would be easier to compare these 
values. We also learned that the sampling frequency for the metrics might influence 
the results significantly. 

All runs always use full nodes. The most optimal configuration on one node 
(combination of MPI ranks, threads and GPUs if applicable) is taken as a baseline. 
This configuration is used in subsequent runs on two, four, eight, … nodes. Consider 
that the graphs show always the number of nodes, irrespective of the number of CPU 
cores or GPUs that might be different in the machines. 

It becomes clear from the graphs, if not known already, that it does not make sense to 
keep increasing the number of nodes hoping that computations will finish more rapidly 
at a much lower energy cost. And it is important to determine the most optimal 
combination of MPI ranks, threads and GPUs before submitting a whole bunch of 
computations. 

For GROMACS, CP2K and NAMD, we show following plots: 

• “Performance-Energy” plot per machine, 

• “Energy usage” for all machines. 

In addition, we also show for GROMACS and NAMD  

• “Normalized energy usage per ns/day”. 

All the data shown in the graphs and tables in the following sections are available in 
the different Platform folders of the shortbench repository of EPICURE’s GitLab. The 
Excel file combining all data can be found there as well. 

5.1. Job script examples  
The table below contains references to job script examples used for application 
executions with power energy measurements. For some machines only the regular 
Slurm scripts are available. For others, the example scripts (also) contain references 
to external systems (MareNostrum5, EAR; Leonardo, CINEMON and COUNTDOWN; 
Karolina, MERIC).  

https://opencode.it4i.eu/epicure/shortbench
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Machine 

 

Application Partition 

(library) 

Job script example 

MareNostrum5 GROMACS CPU-X86 (EAR) MN5-GROMACS-CPU-X86 example 

GPU (EAR) MN5-GROMACS-GPU example 

CP2K CPU-X86 (EAR) MN5-CP2K-CPU-X86 example 

GPU (EAR) MN5-CP2K-GPU example 

NAMD CPU-X86 (EAR) MN5-NAMD-CPU-X86 example 

GPU (EAR) MN5-NAMD-GPU example 

DECAULION GROMACS CPU-X86 DECAULION-GROMACS-CPU-X86 example 

CPU-ARM DECAULION-GROMACS-CPU-ARM example 

GPU DECAULION-GROMACS-GPU example 

CP2K CPU-X86 DECAULION-CP2K-CPU-X86 example 

CPU-ARM DECAULION-CP2K-CPU-ARM example 

GPU DECAULION-CP2K-GPU example 

NAMD CPU-X86 DECAULION-NAMD-CPU-X86 example 

CPU-ARM N/A 

GPU DECAULION-NAMD-GPU example 

MELUXINA GROMACS CPU-X86 MELUXINA-GROMACS-CPU-X86 example 

GPU MELUXINA-GROMACS-GPU example 

CP2K GPU-X86 MELUXINA-CP2K-CPU-X86 example 

GPU MELUXINA-CP2K-GPU example 

NAMD CPU-X86 MELUXINA-NAMD-CPU-X86 example 

GPU MELUXINA-NAMD-GPU example 

VEGA GROMACS CPU VEGA-GROMACS-CPU-X86 example 

GPU VEGA-GROMACS-GPU example 

CP2K CPU VEGA-CP2K-CPU-X86 example 

GPU VEGA-CP2K-GPU example 

NAMD CPU VEGA-NAMD-CPU-X86 example 

GPU VEGA-NAMD-GPU example 

DISCOVERER GROMACS CPU DISCOVER-GROMACS-CPU-X86 example 

CP2K CPU DISCOVER-CP2K-CPU-X86 example 

NAMD CPU DISCOVER-NAMD-CPU-X86 example 

  

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/GROMACS/gromacs_job.sh?ref_type=heads
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/CP2K/cp2k.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/NAMD/namd_job_adjusted.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Discoverer/GPP/CP2K/cp2k_job.batch
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
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Machine 

 

Application Partition 

(library) 

Job script example 

CINECA GROMACS CPU (CINEMON) CINECA-GROMACS-CPU-X86 example 

GPU (CINEMON) CINECA-GROMACS-GPU example 

GPU 
(COUNTDOWN) 

CINECA-GROMACS-GPU example 

CP2K CPU (CINEMON) CINECA-CP2K-CPU-X86 example 

GPU (CINEMON) CINECA-CP2K-GPU example 

GPU 
(COUNTDOWN) 

CINECA-CP2K-GPU example 

NAMD CPU 
(COUNTDOWN) 

CINECA-NAMD-CPU-X86 example 

GPU (CINEMON) CINECA-NAMD-GPU example 

KAROLINA GROMACS CPU KAROLINA-GROMACS-CPU-X86 example 

CPU (MERIC) KAROLINA-GROMACS-CPU-X86 example 

GPU KAROLINA-GROMACS-GPU example 

GPU (MERIC) KAROLINA-GROMACS-GPU example 

CP2K CPU KAROLINA-CP2K-CPU-X86 example 

CPU (MERIC) KAROLINA-CP2K-CPU-X86 example 

GPU KAROLINA-CP2K-GPU example 

GPU (MERIC) KAROLINA-CP2K-GPU example 

NAMD CPU KAROLINA-NAMD-CPU-X86 example 

CPU (MERIC) KAROLINA-NAMD-CPU-X86 example 

GPU KAROLINA-NAMD-GPU example 

GPU (MERIC) KAROLINA-NAMD-GPU example 

LUMI GROMACS CPU LUMI-GROMACS-CPU-X86 example 

GPU LUMI-GROMACS-GPU example 

CP2K CPU LUMI-CP2K-CPU-X86 example 

GPU LUMI-CP2K-GPU example 

NAMD CPU LUMI-NAMD-CPU-X86 example 

GPU LUMI-NAMD-GPU example 

JEDI GROMACS GPU JEDI-GROMACS-GPU example 

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np112/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/countdown/logfiles/000001/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/CP2K/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/countdown/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/NAMD/cinemon/logfiles/000000/000000_submit_N1np14/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/NAMD/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/JEDI/ACC/GROMACS/gromacs_job.sh


 

 43 

5.2. Performance-energy graph 
The performance for GROMACS and NAMD is reported by the programs in units of 
[ns/day]. This reported performance gives an indication of the number of nanoseconds 
in simulation time can be executed with an equivalent runtime of 1 day of HPC 
resources. 

For CP2K, the performance is not reported directly by the program. Instead, the 
efficiency (𝜂𝑖) is used, calculated with the following formula: 

𝜂𝑖 =
𝑛0 ⋅ 𝑡0
𝑛𝑖 ⋅ 𝑡𝑖

, 

with 𝑛0, 𝑛𝑖 the amount nodes in the baseline and 𝑖-th calculation, and 𝑡0, 𝑡𝑖the wall 
time for the calculation to complete. 

Depending on the benchmark, the normalized performance (GROMACS, NAMD) or 
efficiency (CP2K) and the consumed energy are shown simultaneously in the 
performance-energy graph. Both quantities are plotted such that they start in the same 
point, at the baseline of one full node (𝑛0 = 1). From this baseline quantity, a dotted 
line is drawn. The graph has two y-axes, on the left and the right of the graph, where 
the normalized performance or efficiency, and total energy consumption are given 
respectively. 

The normalized performance is obtained by dividing the performance by the number 
of nodes used for that calculation. The resulting quantity, the normalized performance, 
is an indication for the computation time if the equivalent calculation is performed on 
the baseline system of 1 node. For GROMACS and NAMD, the performance is given 
in units of [ns/day], which indicates how many nanoseconds of simulation time can be 
computed in one day of HPC calculation. This value is expressed in units of 
[ns/day/node] and [µs/day/node] for GROMACS and NAMD respectively. Example: if 
the performance is 12.90 ns/day on two nodes, it is shown as 12.90 / 2 = 6.45 
ns/day/node. 

The energy on the graph is the total energy consumption reported for the number of 
nodes, expressed in [kJ]. This quantity does not need to be rescaled as the same 
calculation is performed on the different systems number of nodes. In general, more 
nodes require less computation time but more simultaneous power consumption, such 
that the overall energy consumption is in general larger for multiple nodes. 

Furthermore, the ‘Net Efficiency Loss’ is given in grey on the figures, which 
corresponds to a product of the net performance by the consumed energy. The 
resulting quantity gives an indication to the increased power, taking into account the 
changes in performance when the code is run on a different number of nodes. A line 
that goes up from the baseline indicates a higher than expected power consumption, 
when the line drops below the baseline, the calculation will use less power taking into 
account the performance loss of running on multiple nodes. 

In general, it is expected that the efficiency or performance of the calculation will go 
down on multiple nodes, and the energy consumption and net efficiency loss will 
increase. The values will deviate from the baseline. In the ideal cases, the three lines 
would stay as close to the dotted line as possible.  
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CPU 

GROMACS 

In Figure 5-1 and Figure 5-2, the result for the GROMACS tests on CPU are shown. 

The results for LUMI, Karolina, Deucalion and Discoverer are similar, with relatively 
good scaling around ~75% on 16 nodes and a relative low power increase to ~1.3 
times the baseline. The net efficiency loss always lies relatively close to the baseline, 
which means that the energy increase originates from the lower performance on 
multiple nodes. 

For Vega, the baseline power consumption is higher, with an efficiency that stays close 
to the baseline. Comparing with the machines mentioned above, it gives the suspicion 
that the baseline values have a lower performance, whereas the code runs slightly 
better on multiple nodes. 

On Leonardo, MareNostrum 5 and MeluXina, the power increase is more significant. 
On Leonardo, this is accompanied with a lower performance, where the increase in 
power thus probably originates from the less efficient scaling of the code across the 
nodes. This is visible in the net efficiency loss that stays close to the baseline 

MareNostrum 5 shows a better performance, where the increase in power originates 
from the higher number of nodes and not the efficiency. This is visible in the net 
efficiency loss that goes up from the baseline. 

 

  

  

Figure 5-1: Graphs for GROMACS CPU for LUMI, MeluXina Vega and Karolina. 
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Figure 5-2: Graphs for GROMACS CPU for MareNostrum 5, Leonardo, Deucalion and Discoverer. 

 

CP2K 

The power consumption in [kJ] and efficiency in [%] for CP2K on CPU for the various 
machines is given in Figure 5-3 and Figure 5-4. 

For Leonardo, there is a large increase in power consumption for 16 nodes, but this 
likely originates from the relative bad scaling of CP2K across several nodes; the net 
efficiency loss stays almost constant across the calculation. 

The other machines give a gradual increase in energy consumption towards ~2 times 
the baseline power, with the efficiency dropping towards ~30%. 

  

Figure 5-3: Graphs for CP2K CPU for LUMI and MeluXina. 
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Figure 5-4: Graphs for CP2K CPU for Vega, Karolina, MareNostrum 5, Leonardo, Deucalion and Discoverer. 

 

NAMD 

In Figure 5-5, the results for NAMD on CPU are shown. On LUMI, Leonardo, 
MareNostrum 5 and Deucalion relatively good scaling is achieved with a net efficiency 
loss that stays close to the baseline. On MeluXina, the efficiency drops significantly 
but the power increase is relatively small, leading to a net efficiency loss that goes 
down from the baseline. 

NAMD has internal parallelisation routines. One of these sets the FFT-grid, which is 
thus dependent on the number of tasks. This can explain the jumps in efficiency, while 
the net efficiency loss stays close to the baseline. For example, for Discoverer, the 
parallelization for 8 nodes is not a direct multiple of the number of tiles, which appears 
to be more efficient compared to a perfect tiling on the other configurations. A similar 
behaviour appears on MareNostrum 5 with 16 nodes. 
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Figure 5-5: Graphs for NAMD CPU.  
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GPU 

GROMACS 

The results for the performance in [ns/day/node] and the power consumption in [kJ] is 
shown in Figure 5-7. 

The results for LUMI, MeluXina and Karolina are similar, with an efficiency that drops 
to ~30% and a power increase of ~3 times the baseline. 

For Vega, MareNostrum 5 and JEDI, the power increase is more substantial as well 
as the efficiency that drops significantly. For Vega, there is a large increase of power 
consumption around 8 nodes. As the net efficiency loss is under the baseline. This 
indicates that there is a problem with the scaling beyond 8 nodes. 

Leonardo reports the best scaling for GROMACS on GPU, but the reported baseline 
performance is lower than on the other machines. 

 

  

  

Figure 5-6: Graphs for GROMACS GPU for LUMI, MeluXina, Vega and Karolina. 
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Figure 5-7: Graphs for GROMACS GPU for MareNostrum 5, Leonardo, Deucalion and JEDI. 

 

CP2K 

In Figure 5-8 the results for the scaling of CP2K on GPU are shown. 

MeluXina, Vega, Karolina, MareNostrum 5 and Deucalion report similar scaling on 
multiple nodes, with a large power increase towards ~5.5 times the baseline and a low 
efficiency of ~15%. For Vega, the net efficiency loss drops significantly below the 
baseline, which indicates performance scaling problems. The other listed machines 
have a relative stable net efficiency loss, indicating that the increased power 
consumption originates from a less ideal scaling. 

For LUMI and Leonardo, the scaling and power consumption is slightly better than the 
other machines. 

Most machines indicate a larger jump around 8 nodes in both a lower performance 
and a higher power consumption. This is likely because the program has difficulties 
scaling to such many GPUs. 
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Figure 5-8: Graphs for CP2K GPU.  
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NAMD 

The results for the scaling of NAMD on GPU are shown in Figure 5-9 and Figure 5-10. 

For LUMI, MeluXina and Leonardo, the baseline value was taken for two nodes. On 
Leonardo, the single node configuration could not perform the benchmark. The single 
node run is less efficient for the two other systems, probably due to the internal 
automatic parallelisation on NAMD that chooses a less optimal configuration for these 
systems. 

On Vega, there is a clear scaling issue on the GPUs, with efficiency taking a sharp 
drop on multiple nodes. The net efficiency loss is below the baseline, indicating that 
the increase in computational resources comes from the reduced efficiency. 

 

  

  

  

Figure 5-9: Graphs for NAMD GPU for LUMI, MeluXina, Vega, Karolina, MareNostrum 5 and Leonardo. 
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Figure 5-10: Graph for NAMD GPU for Deucalion. 

 

ARM 

  

Figure 5-11: Graph for GROMACS ARM (left) and CP2K ARM (right) for Deucalion. 

GROMACS 

The scaling of GROMACS on ARM for Deucalion has a similar scaling as on GPU, 
seen in Figure 5-11 (left), but the performance of the baseline is considerably lower for 
a similar amount of consumed energy for the benchmark. 

CP2K 

The CP2K on ARM for Deucalion in Figure 5-11 (right) shows a bad scaling of CP2K 
on ARM. The net efficiency loss is below the baseline, which indicates that the increase 
in power originates from the less efficient run on multiple nodes. 
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5.3. Energy usage 
This plot shows the energy usage as reported by the different systems, expressed in 
[kJ]. As the full benchmark is always performed on each run, the values are directly 
comparable between the system. Variations in the power consumption originate from 
the different architectures and the methods used to measure the power consumption. 

This figure does not give an indication of the total runtime or efficiency. This will be 
covered in the next section. 

CPU 

GROMACS 

 

Figure 5-12: Energy usage graph for GROMACS CPU. 

In Figure 5-12, the energy consumption for the different systems for GROMACS on 
CPU is compared. 

In general, the different systems follow a similar trend. Vega and Karolina seem to 
have an overall low energy consumption, whereas Leonardo and MareNostrum 5 have 
a larger energy increase with the number of nodes. 

CP2K 

The results for the energy consumption for CP2K on CPU are shown in Figure 5-13. 

Again, the systems have similar characteristics, except for Vega which seems to use 
a lot more energy on the benchmark. MareNostrum 5 now performs much better than 
the GROMACS-CPU case. 
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Figure 5-13: Energy usage graph for CP2K CPU. 

NAMD 

 

Figure 5-14: Energy usage graph for NAMD CPU. 

The results for energy consumption for NAMD-CPU are shown in Figure 5-14. The 
systems are deviating more than in the other two CPU benchmarks, but the energy 
increase is less significant. Now, MareNostrum 5 has the highest energy consumption. 
The most efficient systems seem to be Karolina, MeluXina and LUMI. 
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GPU 

GROMACS 

The results for the power consumption of GROMACS on GPU are shown in Figure 
5-15. Compared with the CPU results in previous section, the power consumption 
seems to be much higher with the increasing number of nodes. Leonardo seems to be 
the exception, with a relatively low power consumption and increase with the number 
of nodes. Deucalion, Vega, MareNostrum 5 and JEDI all have a relative high power 
consumption depending on the number of nodes they used. 

 

 

Figure 5-15: Energy usage graph for GROMACS GPU. 

 

CP2K 

The results for the power consumption for CP2K on GPU are shown in Figure 5-16. 
The trends for the power consumption are similar as the GROMACS GPU results, with 
a wider spread in results. 

Again, Leonardo and MeluXina seem to perform efficiently, and Deucalion, Karolina 
and MareNostrum 5 are consuming the most energy. 

For most systems, there seems to be a more pronounced increase in the power 
consumption at 8 nodes. This is likely due to the less efficient calculation as explained 
with the net efficiency loss from previous section. 
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Figure 5-16: Energy usage graph for CP2K GPU. 

NAMD 

The results for the power consumption of NAMD on GPU are shown in Figure 5-17. 

Vega has a large increase in power consumption with the number of nodes. Now, LUMI 
is the most efficient system, with Leonardo as one of the less efficient systems, 
followed by Karolina and MareNostrum 5. 

 

Figure 5-17: Energy usage graph for NAMD GPU. 
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5.4. Normalized energy usage per ns day and 
per 1 h 

This plot shows the energy cost to perform a similar computation on a one node 
equivalent for one computational cycle. It uses both the concept of normalized 
performance of the performance-energy plot, and the total energy usage. The total 
energy usage is divided by the normalized performance to obtain the quantity given 
on this plot, expressed in [kJ/(ns/day/node)], [kJ/(µs/day/node)] or [kJ/(1/h/node)]. It 
shows an increase of the energy cost by increasing number of nodes, and a general 
“measure” of the efficiency of the machine. As this value is rescaled with the 
performance, it also includes the relative speedup between the different machine, but 
also the relative additional energy consumption for this speedup. This value should be 
low, as this means a relative low energy usage and a relatively high (normalized) 
performance. The main difference between this graph and the total energy difference, 
is that this graph also includes the runtime or performance of the calculation, where 
the energy usage just reports the total energy consumed over the whole calculation. 
For CP2K, the energy usage is divided by the inverse of the runtime in hours. 

CPU 

GROMACS 

 

Figure 5-18: Normalized energy usage graph for GROMACS CPU. 

The results for the normalized energy usage for GROMACS on CPU are shown in 
Figure 5-18. 

The systems have similar characteristics, with only Leonardo and MeluXina having 
two outliers from 8 nodes onwards. From the net efficiency loss in Figure 5-1 and 
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Figure 5-2, which remains close to the baseline, it seems that there are performance 
issues leading to a higher energy consumption. 

Below 8 nodes the normalized energy usage is almost flat for most systems. This 
means that a higher performance (lower runtime) corresponds to a similar amount of 
energy increase. 

CP2K 

The normalized energy usage for CP2K on CPU is shown in Figure 5-19. 

For CP2K, we use the runtime in hours as a reference for the performance. 

Leonardo again has a large increase from 16 nodes on. 

Compared to GROMACS on CPU, the results seem to increase more with the number 
of nodes used on the system. This means that a faster runtime corresponds to a much 
higher energy usage than expected. It is much less efficient to run on multiple nodes 
with a lower runtime than to run slower on a lower number of nodes. 

Except for Leonardo and MareNostrum 5, all the machines seem to give similar 
characteristics. MareNostrum 5 is the most efficient machine according to these 
results. 

 

Figure 5-19: Normalized energy usage graph for CP2K CPU. 

NAMD 

The results for NAMD on CPU for the normalized energy usage are shown in Figure 
5-20. There is a larger spread in the results compared to the other two benchmarks 
on CPU. However, the results are flatter than the other benchmarks, which means that 
the program will be faster with a similar ratio in the increase in power consumption. 
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Figure 5-20: Normalized energy usage graph for NAMD CPU. 

GPU 

GROMACS 

 

Figure 5-21: Normalized energy usage graph for GROMACS GPU. 

For GROMACS on GPU, the results for the normalized energy usage are shown in 
Figure 5-21. Compared to the GROMACS CPU results, the values are much higher 
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for 16 nodes. This means that the faster runtime on 16 nodes uses much more energy 
than the efficiency gain provides. 

The results for Vega and JEDI are not efficient from 8 nodes onwards. Any reduction 
in runtime by a larger number of nodes results in a much larger increase in the energy 
consumption on these systems. 

Leonardo has a relatively flat curve, where the increase in efficiency has an equal 
relative increase in power consumption. 

CP2K 

The results for the normalized energy usage for CP2K on GPU are shown in Figure 
5-22. 

Again, Vega has a pronounced energy increase from 8 nodes onwards, followed by 
MareNostrum on 5 nodes. 

Leonardo is the most efficient, with a relatively low line and energy usage. 

 

Figure 5-22: Normalized energy usage graph for CP2K GPU. 

NAMD 

The results for NAMD on GPU are shown in Figure 5-23. 

The power consumption for Vega goes up drastically from 2 nodes. It is not efficient to 
have the relative reduction in runtime for the increase in power consumption for these 
configurations. 

Interestingly, Leonardo now is one of the less efficient systems, requiring more energy 
to get an increase in performance, but this normalized energy usage still is relatively 
flat. 

LUMI is the most efficient system, with also a relative flat normalized energy usage. 
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Figure 5-23: Normalized energy usage graph for NAMD GPU. 
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5.5. Performance and energy heat maps 
The heat maps below show the performance and the energy, as was shown in graphs 
in Section 5.3. Better results have a greener colour, worse results are more red. The 
best and worst results are in a bold font. 

Performance 

For GROMACS and NAMD, the reported performance in [ns/day] is used, for CP2K 
the wall time in [s] is used. 

CPU 

GROMACS 

The performance for GROMACS on CPU is reported in Figure 5-24, higher values 
(green) indicate a better performance. The best performance for GROMACS CPU was 
obtained on MareNostrum 5 with a total of 91.08 ns/day using 16 nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer 

1 6.52 5.83 5.92 4.57 8.08 8.11 5.40 6.40 

2 12.90 10.86 12.27 9.00 15.16 15.12 10.67 12.94 

4 24.70 18.20 23.29 16.87 28.94 24.58 19.94 25.74 

8 46.77 31.53 44.01 31.07 53.53 40.86 36.60 47.26 

16 82.35 44.03 72.47 53.32 91.08 52.33 61.95 80.56 
Figure 5-24: Performance reported by GROMACS/CPU in [ns/day].  

CP2K 

The wall time for CP2K benchmark on CPU is reported in Figure 5-25, lower values 
(green) indicate a better performance. MareNostrum 5 completed the CP2K CPU 
benchmark in 34 seconds using 16 nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer 

1 446 437 535 518 307 401 408 425 

2 244 264 303 304 172 258 241 258 

4 145 157 188 180 97 174 150 152 

8 89 102 120 137 59 118 100 101 

16 68 83 87 76 34 120 83 70 
Figure 5-25: Total wall time for CP2K/CPU in [s]. 

NAMD 

The performance for NAMD on CPU is reported in Figure 5-26, higher values (green) 
indicate a better performance. The best performance for NAMD CPU was obtained on 
LUMI with a total of 2.45 ns/day using 16 nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer 

1 0.12 0.13 0.11 0.08 0.10 0.10 0.08 0.13 

2 0.23 0.26 0.22 0.16 0.20 0.21 0.16 0.27 

4 0.46 0.45 0.37 0.30 0.32 0.40 0.32 0.49 

8 0.89 0.81 0.78 0.54 0.59 0.79 0.63 1.17 

16 2.45 1.21 2.06 0.88 1.37 1.87 1.70 1.84 
Figure 5-26: Performance reported by NAMD/CPU in [ns/day]. 
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GPU 

GROMACS 

The performance for GROMACS on GPU is reported in Figure 5-27, higher values 
(green) indicate a better performance. The best performance for GROMACS GPU was 
obtained on Karolina with a total of 177.66 ns/day using 16 nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI 

1 33.56 26.83 19.07 31.30 39.81 17.60 25.35 45.02 

2 46.35 50.08 29.86 50.02 54.55 35.73 31.18 46.23 

4 91.34 81.56 41.92 86.97 78.49 51.50 48.90 60.15 

8 111.71 101.24 15.46 138.51 118.35 100.28  89.23 

16 127.88 102.97 27.33 177.66 164.69 111.47  66.42 
Figure 5-27: Performance reported by GROMACS/GPU in [ns/day]. 

 CP2K 

The wall time for CP2K on GPU is reported in Figure 5-28, lower values (green) 
indicate a better performance. MareNostrum 5 completed the CP2K GPU benchmark 
in 38 seconds using 16 nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion 

1 283 205 110 206 153 359 259 

2 208 151 241 120 107 260 191 

4 111 95 146 91 68 114 133 

8 87 101 251 63 50 95  

16 56 82 151 66 38 58  
Figure 5-28: Total wall time for CP2K/GPU in [s]. 

NAMD 

The performance for NAMD on GPU is reported in Figure 5-29, higher values (green) 
indicate a better performance. The best performance for NAMD GPU was obtained on 
MareNostrum 5 with a total of 6.56 ns/day using 16 nodes, closely followed by LUMI 
with a total of 6.46 ns/day using 16 nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion 

1 0.34 0.21 0.45 0.47 0.56  0.27 

2 1.12 0.61 0.46 0.84 0.87 0.21 0.45 

4 1.86 0.76 0.24 1.45 1.25 0.40 0.80 

8 3.42 1.09 0.24 3.05 4.86 0.79  

16 6.46 1.38 0.18 4.92 6.56 1.55  
Figure 5-29: Performance reported by NAMD/GPU in [ns/day]. 
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Energy usage 

For the benchmarks, the reported consumed energy is given in units of [kJ]. 

CPU 

GROMACS 

The consumed energy for GROMACS on CPU is reported in Figure 5-30, lower values 
(green) indicate a better energy usage. The lowest energy was consumed by MeluXina 
using 4 nodes with 326.97 kJ, closely followed by Karolina and Leonardo using 1 node 
with respectively 334.05 kJ and 339.05 kJ. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer 

1 360.16 362.00 362.47 334.05 398.12 339.05 357.69 371.30 

2 372.47 386.00 359.22 333.90 437.86 395.10 368.07 372.64 

4 391.61 440.00 344.51 352.31 487.24 447.42 401.19 383.56 

8 414.44 488.00 353.64 379.58 570.45 563.39 456.98 440.65 

16 491.29 691.00 457.11 433.31 863.00 932.68 568.48 544.05 

Figure 5-30: Energy usage for GROMACS/CPU in [kJ]. 

CP2K 

The consumed energy for CP2K on CPU is reported in Figure 5-31, lower values 
(green) indicate a better energy usage. MareNostrum 5 completed the CP2K CPU 
benchmark in 34 seconds using 16 nodes. The lowest energy was consumed by 
Deucalion using 1 node with 213.75 kJ, closely followed by Karolina with 216.57 kJ 
using 1 node. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer 

1 294.92 252.00 329.14 216.57 265.07 321.14 213.75 291.05 

2 330.93 286.00 367.40 250.65 304.10 416.23 232.90 359.03 

4 287.19 322.00 447.95 269.45 338.92 572.71 265.42 421.65 

8 473.51 409.00 559.47 488.66 330.81 740.46 317.17 571.28 

16 716.28 627.00 770.77 588.12 388.89 1492.97 493.50 794.34 
Figure 5-31: Energy usage for CP2K/CPU in [kJ]. 

NAMD 

The consumed energy for NAMD on CPU is reported in Figure 5-32, lower values 
(green) indicate a better energy usage. The lowest energy was consumed by LUMI as 
well using the same 16 nodes with 978.26 kJ. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer 

1 1187.32 1100.00 1180.70 1027.15 1829.13 1541.03 1413.09 1161.45 

2 1296.20 1100.00 1223.24 1060.93 1870.39 1530.21 1446.58 1226.76 

4 1264.26 1190.00 1409.53 1102.18 2241.73 1655.20 1454.59 1436.22 

8 1301.04 1170.00 1530.47 1223.17 2564.66 1840.27 1524.36 1457.86 

16 978.26 1360.00 1339.35 1440.17 2333.07 1929.51 1173.66 2078.29 

Figure 5-32: Energy usage for NAMD/CPU in [kJ]. 
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GPU 

GROMACS 

The consumed energy for GROMACS on GPU is reported in Figure 5-33, lower values 
(green) indicate a better energy usage. The lowest energy was consumed by Vega 
using 1 node with 135.42 kJ. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI 

1 180.83 181.00 135.42 231.48 151.94 136.81 232.79 159.00 

2 249.57 189.00 146.46 271.86 212.24 138.23 353.70 240.00 

4 258.09 229.00 170.06 335.65 499.10 160.39 363.21 354.00 

8 395.12 334.00 678.87 408.16 439.82 180.81  489.00 

16 630.01 545.00 736.15 612.11 800.31 250.89  1154.00 
Figure 5-33: Energy usage for GROMACS/GPU in [kJ]. 

CP2K 

The consumed energy for CP2K on GPU is reported in Figure 5-34, lower values 
(green) indicate a better energy usage. The lowest energy was consumed by MeluXina 
using 1 node with 179 kJ. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion 

1 253.35 179.00 217.76 381.05 252.54 252.71 324.28 

2 355.49 218.00 271.94 419.43 308.31 332.41 468.38 

4 397.70 247.00 292.82 723.56 407.75 309.14 668.31 

8 620.25 477.00 936.23 990.64 1612.20 469.34  
16 796.12 946.00 1251.58 2104.44 1765.96 578.52  

Figure 5-34: Energy usage for CP2K/GPU in [kJ]. 

NAMD 

The consumed energy for NAMD on GPU is reported in Figure 5-35, lower values 
(green) indicate a better energy usage. The lowest energy was consumed by VEGA 
using 1 node with 354.38 kJ 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion 

1 539.28 575.00 354.38 816.90 574.61  824.83 

2 383.83 443.00 652.61 871.85 805.60 994.75 938.86 

4 454.08 627.00 1319.18 1090.58 1195.85 1058.25 1063.01 

8 441.45 832.00 2389.53 1233.31 1183.12 1080.64  
16 454.64 910.00 4365.54 1793.60 1925.27 1144.74  

Figure 5-35: Energy usage for NAMD/GPU in [kJ]. 
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Energy advantage GPU CPU 

For the benchmarks, the reported consumed energy for the CPU is compared relative 
to the GPU, the division of the consumed energy of the CPU by the GPU is given. 

CPU 

GROMACS 

The consumed energy for GROMACS on CPU relative to the GPU is reported in Figure 
5-36, higher values (green) indicate a better energy usage of the GPU. The lowest 
relative energy was consumed by Leonardo using 16 nodes with 3.72 times increased 
efficiency on the GPU relative to the CPU. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion  

1 1.99 2.00 2.68 1.44 2.62 2.48 1.54  

2 1.49 2.04 2.45 1.23 2.06 2.86 1.04  

4 1.52 1.92 2.03 1.05 0.98 2.79 1.10  

8 1.05 1.46 0.52 0.93 1.30 3.12   

16 0.78 1.27 0.62 0.71 1.08 3.72   

Figure 5-36: Relative energy usage for GROMACS CPU/GPU. 

CP2K 

The consumed energy for CP2K on CPU relative to the GPU is reported in Figure 
5-37, higher values (green) indicate a better energy usage of the GPU. Leonardo 
completed the CP2K benchmark with a 2.58 better efficiency on the GPU using 16 
nodes. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion  

1 1.16 1.41 1.51 0.57 1.05 1.27 0.66  

2 0.93 1.31 1.35 0.60 0.99 1.25 0.50  

4 0.72 1.30 1.53 0.37 0.83 1.85 0.40  

8 0.76 0.86 0.60 0.49 0.21 1.58   

16 0.90 0.66 0.62 0.28 0.22 2.58   
Figure 5-37: Relative energy usage for CP2K CPU/GPU. 

NAMD 

The consumed energy for NAMD on CPU relative to the GPU is reported in Figure 
5-38, higher values (green) indicate a better energy usage of the GPU. The best 
relative energy usage was performed by MareNostrum 5 on 16 nodes with a 4.21 times 
better energy usage of the GPU relative to the CPU. 

 LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion  

1 2.20 1.91 3.33 1.26 3.58  1.71  

2 3.38 2.48 1.87 1.22 1.04 1.54 1.54  

4 2.78 1.90 1.07 1.01 1.09 1.56 1.37  

8 2.95 1.41 0.64 0.99 4.21 1.70   

16 2.15 1.49 0.31 0.80 2.23 1.69   

Figure 5-38: Relative energy usage for NAMD CPU/GPU. 
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6. Conclusion 
Chapter 2 describes the benchmarks being used to give an overview of energy 
measurements on the different machines. Chapter 3 presents the available EuroHPC 
machines, including specifications, measurement tools and other available libraries. 
Chapter 4 discusses tools which provide extra information outside of the default data 
gathered by Slurm, useful for collecting and/or influencing energy usage, together with 
an overview of dashboards available on some sites. Chapter 5 contains the results of 
running the benchmarks using GROMACS, CP2K and NAMD, on CPU and GPU, 
providing both performance and energy usage data. 

It might be tempting to pick to the most “green-ish” machine from the heat maps for 
your next computations. However, we suggest to not blindly follow the tables and take 
the following remarks into account. 

• Different versions of the same program might have been used, or the same 
version with different compilation options. 

• The placement of the jobs by the scheduler might be different. 

• The pinning might be different. 

• Energy measurements might be different: output directly from sensors, or via 
specific libraries; sampling rate; … 

• Even if the hardware is very similar (MeluXina, Vega and Discoverer), results 
might be different. 

• The number of CPU cores or GPUs might be different. 

• Make sure to use full nodes (--exclusive) when comparing machines. 


