
UNLOCKING EXASCALE

30.04.2025 I EPICURE WEBINAR SERIES
J.ZJUPA, J.CHEW (JSC/FZJ)

A FIRST LOOK AT JUPITER

Jülich Supercomputing Centre (JSC)

2

source: google maps

Jülich

JSC
FZJ

Template Title

3

Talk about something...

source: Herwig Zilken / FZJ

Template Title

4

Talk about something...

source: Herwig Zilken / FZJ

JSC Supercomputing systems

5

CPU GPU

source: Bernd Mohr / JSC

JUPITER Booster

6

• 1 ExaFLOP/s (FP64, HPL) performance
• ~ 6000 compute nodes
 node: 4 NVIDIA Grace Hopper GH200 Superchips

NVIDIA Hopper H100 GPU: 96 GB memory, NVIDIA Grace CPU: 72 ARM cores, 120 GB memory (RAM)

https://www.fz-juelich.de/en/ias/jsc/jupiter/tech

JUPITER HW installation progress

7

Completed:
• IT Rooms (double container units): 8 out of 8
• 2.5 MW Power substations: 15 out of 15
• Adiabatic towers: 14 out of 14
• Racks: 125 out of 125
• IB cabling: 293 km out of 293 km
• ExaSTORE storage cluster and ExaTAPE

In progress:
• ExaFLASH storage cluster

Template Title

8

Talk about something...

JUPITER SW installation progress

9

Completed:
• Management networks completed
• Login node preparation done
• Integration into Slurm routines done
• Integration into other site routines and filesystems done

In progress & next steps:
• Stabilising (onlining) of JUPITER racks and compute nodes
• Testing & early access (JUREAP) expected in the next week(s)

JSC HPC Tools

10

• JuDoor - user portal and project management
https://judoor.fz-juelich.de
• KontView - resource utilisation timeline (accessible
through JuDoor project page)

• LLview - job reporting
https://llview.fz-juelich.de
• JUBE - benchmarking environment
https://www.fz-juelich.de/en/ias/jsc/services/user-
support/software-tools/jube

• Score-P - profiling & tracing measurement system
https://www.score-p.org
• Scalasca - trace analysis toolset
https://www.scalasca.org/

JSC Support Infrastructure

11

• HPC support: sc@fz-juelich.de
• ATMLs - Algorithms, Tools and Methods Labs
https://www.fz-juelich.de/de/ias/jsc/ueber-
uns/struktur/algorithms-tools-and-methods-labs-atmls
• SDLs - Simulation and Data Labs
https://www.fz-juelich.de/de/ias/jsc/ueber-
uns/struktur/simulation-and-data-labs
• Project Mentor
https://www.fz-juelich.de/en/ias/jsc/services/user-
support/project-mentoring

• Training
https://www.fz-juelich.de/en/ias/jsc/news/events/training-
courses/2025

Getting access to JUPITER resources - national

12

50% national (GCS) share - Regular & Large Scale Projects
next call: opens 07 July 2025 - closes 11 August 2025, 5pm CEST
GCS Call 2025-2: https://www.gauss-centre.eu/news
GCS Call 2025-1: https://www.gauss-centre.eu/news/gcs-call-2025-1-for-large-scale-projects-now-open-call-33
GCS call information:
https://www.gauss-centre.eu/for-users/hpc-access
Important Notice on How to Apply for Computing Time on JUPITER/JUWELS (with fact sheet)
https://www.gauss-centre.eu/for-users/hpc-access/instructions-for-juwels
JSC call information (with fact sheet)
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/apply-for-computing-time/gcs-nic
Fact sheet for JUPITER (with application link)
https://jards.gauss-centre.eu/PublicFiles/FactSheets/FactSheet-GCS-NIC-JUPITER.pdf

Application link
https://jards.gauss-centre.eu/gcshome/application/

Getting access to JUPITER resources - European

13

https://eurohpc-ju.europa.eu/eurohpc-ju-call-proposals-
extreme-scale-access-mode_en

50% European (EuroHPC) share
calls: https://eurohpc-ju.europa.eu/supercomputers/
supercomputers-access-calls_en
Regular*
• deadline: 5 Sept 2025, 10am CEST
• allocation period: 15 Feb 2026 – 14 Feb 2027
Extreme Scale
• deadline: 17 Oct 2025, 10am CEST
• allocation period: 01 April 2026 – 31 March 2027
Development* & Benchmarking*
• deadline: 1st of each month 2025, 10am CET
AI* (upcoming)
• deadline: every two months

* JUPITER not listed (yet)
Researchers from academia, research institutes, public authorities,
and industry established or located in an EU Member State or in a
country associated with Horizon 2020 can apply

Getting access to JUPITER resources - complementary

14

Test projects*
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/call-for-applications-for-test-projects-with-jsc-
supercomputing-and-support-resources
• application: rolling call
• duration: 6 months

Data projects
https://www.fz-juelich.de/en/ias/jsc/services/
data-services/data-projects
• application: rolling call
• duration: 1 year
• extension possible

Epicure support available through EuroHPC applications
https://epicure-hpc.eu/support-services
project oriented (intensive), free-of-charge support
a.o. porting, performance analysis, optimisation, debugging, profiling, etc.
* In prep. for JUPITER proposals, best apply for a test project on JUWELS Booster & apply a factor of 2 speed
up for GPU-only applications & consider
the different number of cores per node

HARDWARE CONSIDERATIONS AND APPLICATION
THINGS TO LOOK OUT FOR + APPLICATION PERFORMANCE

LLview job monitoring on JEDI

16

LLview job monitoring on JEDI

17

Disclaimer: The power measurement feature is in active development.

Other profiling tools on JEDI

18

Software stack on JEDI (GH200), GCC toolchain example

19

Derived from configured ‘Easybuild-framework’:
– Current gcc compiler toolchain in Easybuild already includes ARM-based architecture config.
– https://github.com/easybuilders/easybuild-framework/blob/develop/easybuild/toolchains/compiler/gcc.py

used when 'optarch' toolchain option is enabled (and --optarch is not specified)
COMPILER_OPTIMAL_ARCHITECTURE_OPTION = {
(systemtools.AARCH32, systemtools.ARM): '-mcpu=native',
(systemtools.AARCH64, systemtools.ARM): '-mcpu=native',
implies -march=native and -mtune=native
...

}

It Just Works***disclaimer time...

GCC’s aarch64 commit in Sep 2022 made life easier!
- “Rewrite -march=native to -mcpu if no other -mcpu or -mtune is given”

Automatic translation of “-march=native” (x86 option) in Makefiles into “-mcpu=native”.
See: https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html

GH200 “unified memory”: System vs Managed memory?

20

Doesn’t need explicit data movements in unified memory!

Allocation of memory accessible by both CPU/GPU comes in two flavours in unified memory:
- system-allocated memory with “malloc()”
- CUDA managed memory with “cudaMallocManaged()”

Pseudo-code example porting of explicit copy CUDA code to unified memory. 1

[1] Schieffer, G., Wahlgren, J., Ren, J., Faj, J. and Peng, I., 2024, August.
Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper.
In Proceedings of the 53rd International Conference on Parallel Processing.

GH200 “unified memory”: System vs Managed memory?

21

Things to note:
1. First-touch Page Placement

• First-touch policy: Memory page is not allocated during malloc calls, but on first access (i.e. initialisation)
• System-allocated memory places page in system page tables always. Regardless CPU/GPU first-touch.
• Managed memory places page in GPU or system page tables, depend on CPU/GPU which accesses first.

2. Access granularity
• System-allocated memory access is at the granularity of cache-line.
• Managed memory access is at the granularity of page size.

What does this mean for GPU only computation????
• In system-allocated memory, if first-touch is done by GPU, slow as CPU has to handle page fault and populate

system page table.
• In Managed memory, if first-touch is done by GPU, allocated page is placed in GPU page table. Good

performance since data is already on GPU.
• In system-allocated memory, if first-touch is done by CPU, faster initialisation and the cache-line sized CPU-to-

GPU transfers spreads out the the cost of access.
• In Managed memory, if first-touch is done by CPU, upfront high cost of access (page-sized) but lower compute

time afterwards since data is then read directly from GPU memory.

GH200 “unified memory”: System vs Managed memory?

22

IT’S TOO
COMPLICATED!!!!

Well... Existing CUDA code with
explicit copies still work fine...
Just a heads up for folks who uses
cudaMallocManaged()...

Recommended read!
https://arxiv.org/abs/2407.07850

ARM vs x86: Memory Ordering Model?

23

Sequential Consistency... on the software level?
• Compiler can ensure sequential consistency of operations of a single thread.
• Compiler does not know which variable is shared between threads!
• Best to tell compiler ourselves, how to synchronise the accesses between threads.

Software Memory Models says, if program is data-race-free (DRF), Sequential Consistency (SC) is guaranteed.
For memory critical operations, usage of synchronisation operations like mutex or atomic constructs are common
strategies.

But... how does this related to hardware’s memory model???
• “load acquire - store release” concept from mutexes and atomic constructs generate special instructions that

hardware tries to adhere to.
Architecture Load (acquire)

Ordinary SC atomic
Store (release)

Ordinary SC atomic
x86 mov mov mov xchg

Armv8-A (onwards) LDR LDAR STR STLR
Nvidia’s Grace CPU implements the Armv9.0-A architecture.

x86: Strong memory ordering model

24

refer to: https://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf

ARM: Weak memory ordering model

25

Reordering of consecutive loads allowed on ARM architecture!

refer to: https://developer.arm.com/documentation/102336/0100/Memory-ordering

ARM vs x86: Relaxed atomics

26

Normal atomics in software level SC-DRF enforces load (acquire) - store (release) ordering!
– generated assembly instructions follow* the order of program (synchronised across threads)

In C/C++, relaxed atomics allows reordering of mutex/atomic operations between threads.
– in such cases, the hardware memory ordering will be the safeguard for correct concurrent memory access.

see: https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

COMPILER ARCHITECTURE
Take-away message:
• Folks developing compilers works with assembly instruction sets provided by architectures
• Rarely, compiler devs might mistakenly use improper instruction sets.
• Best Practice:

– compare benchmark results between architectures, especially for highly optimised code
with concurrent memory accesses

Gyrokinetic Electromagnetic Numerical Exp. (GENE)

27

• In development for > 20 years
• Fortran language with C++ interface for

CUDA offloading
• Structured grids
• Sparse matrix solver
• Spectral + FVM numerical method
• Uses PETSc for eigenvalue computation
• Fully ported to GPU computation with

CUDA since 2021
• Open source with active development

from research groups
• See: https://genecode.org/

Gyrokinetic Electromagnetic Numerical Exp. (GENE)

28

Performance comparison: A100 VS H100

29

• Simulation setup description:
- 200 × 128 × 96 × 70 × 24 grid points
- Simulates the narrow transport barrier at the
edge of an H-mode fusion plasma

- understand the suppression mechanism of
plasma microturbulences at pedestal

• JURECA-DC_GPU carries 4 A100s each node

• JEDI carries 4 GH200 superchips each node

• Strong scaling on twice the number of A100 GPUs

• Observed >2x speedup on Hopper

Take away messages!

30

• Easybuild toolchain configurations on Github already has aarch64 default values
• Eases the build of software modules on top of toolchains

• GCC compiler has in-built adaptation of `-march=native` flag to corresponding Aarch64 option
• If user application Makefile uses architecture specific flags, refer to compiler specific documentation!
• Other compilers (NVHPC, CLANG, LLVM) may/may not require special attention on aarch64 vs x86

• GH200 comes with Unified Memory, which is different now a different concept of cudaMallocManaged()
• Different memory access granularity between system-allocated and managed memory
• Careful with variable initialisation (CPU/GPU), choose the best for your application

• Be aware that aarch64 is a weak memory ordering model
• Compilers should translate program code to proper assembly instructions based on architecture for SC
• Potential edge cases where SC breaks down, benchmark correctness of output with x86-like MM hardware

THANK YOU FOR YOUR TIME!

